

Michael Adams Consulting Reservoir Engineer. Michael Adams Reservoir Engineering Ltd/ Rogers Adams Petroleum Consultants Ltd 22C Lismore Street, New Plymouth, 4312 NEW ZEALAND

Email: <u>mike@mareservoir.com</u> Tel: +64 21 844 638 GSM

East Coast North Island

Oil Resource Play - Development Scenario Models

Final Report

Version with Confidential and Commercially Sensitive Material Removed

Report prepared by Michael Adams of Michael Adams Reservoir Engineering Ltd for the Ministry of Business Innovation and Employment.

September - October 2012.

MARE Report No: 74 v2 Public

Date: 20th November 2012

File/Version: MARE_EC_Resource_Plays_Scenarios_v2_Public.docx

Table of Contents

1.	Summary & Conclusions	3
2.	Study Objectives & Scope	6
2.1.	Objectives	6
2.2.	Scope	6
2.3.	Deliverables	6
2.4.	Disclaimer	7
3.	Data Sources	7
3.1.	Public Domain	7
3.2.	Provided by MBIE	7
3.3.	Provided by GNS Science	8
3.4.	Capital Expenditure Data	8
3.5.	Operating Expenditure Data	9
3.6.	Financial Data	10
4.	Discussion	10
4.1.	East Coast Regional Geology (GNS, Sep. 2012)	10
4.2.	Analogous Plays	13
4	2.1. The Bakken Shale	14
4	2.2. The Eagle Ford Shale	15
4.3.	Comparison of Analogies	16
5.	Modelling Basis and Assumptions	16
5.1.	Reservoir Conditions	17
5.2.	Rock Properties	17
5.3.	Recovery By Well	
5.4.	Screening Level Financial Models	19
6.	Development Model Descriptions	21
6.1.	Scenario 1 Unsuccessful Exploration	22
6.2.	Scenario 2 Exploration Success But Not Commercial	22
6.3.	Scenario 3 Limited Success & Commercially Viable	22
6.4.	Scenario 3A Limited Success x 3	23
6.5.	Scenario 4 Intermediate Success	23
6.6.	Scenario 4A Intermediate Success x 3	24
6.7.	Scenario 5 Large Exploration Success	25
6.8.	Scenario 5A Large Success x 3	25
6.9.	Scenario 5B Large Success x 6	26
7.	References	27
8.	Appendix 1 – Development Scenarios Forecast Sheets	28
9.	Glossary	41

1. Summary & Conclusions

The main conclusions and results of this work are:

- a. A series of Development Scenario models have been constructed and used to assess the potential production and associated cash-flows. These include expenditures, revenues, royalties and taxes associated with the notional development of currently <u>undiscovered</u> oil volumes that may be present within the Resource Play type Waipawa and Whangaii formations in the East Coast region of the North Island of New Zealand.
- b. These Development Scenario models have to be used to:
 - i. Identify approximate commercial oil resource play thresholds for recoveries per well in the East Coast region.
 - ii. Estimate project cash-flows and revenues, including to the field owners and taxes and royalties to the Crown.
- c. The Development Scenario models constructed for each scenario include forecasts of all product streams (i.e. oil, gas, and water), exploration and development capital expenditure (CAPEX), fixed and variable operating costs (OPEX), project administration, abandonment, royalties and taxes. The technical basis for these forecasts is documented.
- d. Exploration and appraisal wells may successfully test oil from the target Waipawa and Whangai Formations. But this is unlikely to be commercially viable unless recoveries per well can exceed 0.45 million BOE (barrels of oil equivalent), which is the recovery per well estimated using models based on the Whangai/Waipawa formation parameters. This means that the commercial threshold for the onshore East Coast oil resource play requires per well recoveries in the order of 0.45 million barrels of oil equivalent and sufficient play area to allow per unit development costs to be reduced by application to a substantial area.
- e. The smallest commercially viable scenario (i.e. Scenario 3) modelled covers an area of 95 km² with 30 wells distributed over 5 well sites of 6 wells each. This particular scenario recovers 14 mmstb of oil over 11 years and spends approximately NZ\$150 to 200 million per annum in capital and operating costs.

This scenario only just passes the oil industry's typical investment hurdle of a VIR (Value Investment Ratio) better than 0.5, having a VIR of 0.53, despite generating approximately NZ\$165 million in NPV (Net-Present-Value at 20% Discount rate) profit. This low VIR is due to the high capital investment required, peaking at a cumulative capital investment (depreciated) of NZ\$340 million.

f. A number of additional scenarios have been modelled to investigate the effect of a greater degree of both well recoveries and of success in multiple permits and areas. These scenarios can be considered of lower probability, and in the case of the largest development model made (Scenario 5B), as a very low probability end-member in the case of an extreme level of success. The following table summarises the development scenarios modelled.

#	Scenario	Area	Description
1	Exploration not Successful	NA	Planned 4 well Apache/Tag campaign is unsuccessful and discourage further exploration by any party. 4 Expl. Wells. Not modelled further.
2	Limited Exploration success but sub- commercial results	NA	Planned 4 well Apache/Tag campaign is partially successful and further exploration (including other parties) continues but no commercial production results. 12 Expl. Wells. Not modelled further.
3	Limited success and commercially viable production.	100	Recovery of 0.45 million BOE per well. 6 Expl. & Appraisal & 30 production wells drilled 2015 through 2020 from
3A	3 of Scenario 3 with maximum of NZ\$1 billion CAPEX spend per annum.	300	Assumes limited success in 3 different areas of the East Coast. Development proceeds in the first area the others follow at 5 year intervals at a maximum spend rate of NZ\$1 billion per annum. 6 Expl. & Appraisal & 3 x 30 production wells drilled 2015 through 2025.
4	Intermediate exploration success and average N. American shale oil yields.	260	Recovery of 0.55 million BOE per well. 10 Expl. & Appraisal & 600 production wells drilled 2017 through 2030 from 50 sites.
4A	3 of Scenario 4 with maximum of NZ\$1 billion CAPEX spend per annum.	780	Assumes intermediate success in 3 different areas of the East Coast. Development proceeds in the first area the others follow at 5 year intervals at a maximum spend rate of NZ\$1 billion per annum.
5	Exploration success analogous with N. American Bakken Shale. Provided by Apache.	260	Recovery of 1.0 million BOE per well. 10 Expl. & Appraisal & 600 production wells drilled 2017 through 2030 from 50 sites.
5A	3 of Scenario 5 with maximum of NZ\$1 billion CAPEX spend per annum, i.e. 3 of the Apache Scenario.	780	Assumes Scenario 5 high success in 3 different areas of the East Coast. Development proceeds in the first area then the others follow at 5 year intervals at a maximum spend rate of NZ\$1 billion per annum.
5B	6 of Scenario 5 distributed over 50 years, i.e 6 of the Apache scenario.	1560	Assumes two of Scenario 5A, i.e. extreme success across the entire region in 6 different areas of the East Coast. Development proceeds in the first area then others follow at 3 to 5 year intervals at a maximum spend rate of approximately NZ\$2 billion per annum.

Table 1 Summary of the Development Scenarios as Modelled

g. A number of overseas oil resource play developments have been reviewed to determine the most suitable analogy for application to the East Coast. Industry participants, including permit holders Apache/Tag have suggested the North American Bakken Shale forms an analogous scenario.

A comparison of the substantial publically available data from North America with the area in this study confirms that the Bakken and Eagleford shales are in some degree analogous. This is primarily in the application of production technologies, i.e. should the Waipawa and Whangai formations be proven productive by testing, then the production technologies successfully employed in the North American analogies would likely be deployed to make these formations commercially viable here.

The lowering of costs with time and activity volume observed in the US would also be expected to occur here, assuming substantial exploration success. In addition, the application of development technologies includes drilling up to 12 horizontal wells of

1000 to 2000 m horizontal reach from individual sites, where each of these wells would be fracture stimulated at up to 10 intervals, can be anticipated here in the event of exploration success.

h. It is the view of the author, and of GNS Science (GNS, Sep. 2012), that the East Coast Waipawa and Whangai Formations which are the primary target of the current East Coast exploration phase, are not truly analogous to "Resource Plays" such as the Bakken or Eagle Ford Shales. The Waipawa and Whangai formations are not true shales in the manner of the North American analogues, instead being sequences of interbedded sands, silts and carbonaceous clay/silt stones. Oil and gas generated in the carbonaceous units will migrate into the adjacent silts and sands, and these will be the permeable sources of oil or gas. In addition the high degree of faulting present in the East Coast formations makes migration of hydrocarbons from these formations more likely. This is supported by the observations of oil (and gas) seeps at surface in the region. A better analogy for these formations is likely to be one based on conventional tight oil or gas plays, i.e. where the wells do not require the same intensity of production stimulation, e.g. fracturing, and the productivities are slightly better than in a shale "resource" play.

That the Waipawa and Whangai Formations are viable oil source rocks is supported by the oil seeps in the region. Geochemical analyses of these oils confirm their probable genesis in these formations. While the current depth of burial pressure and temperature places these formations either outside or just in the oil generating window, they have been buried substantially deeper in very recent history. This view is supported by regional structural geology and by the high degree of observed over-pressure in these formations when drilled in the region. The implication of these observations is that the Waipawa and Whangai Formations are almost certain to contain some hydrocarbons. The risk is how much of these will be present and what volume can be mobilised for production by the application of the relevant technologies, and at what rate?

2. Study Objectives & Scope

2.1. Objectives

This study was requested by the Energy and Communication unit of the Ministry of Business, Innovation and Employment with the following objectives;

- 1. To provide a detailed review of the (East Coast Oil Development) scenario(s) provided by Apache & TAG
- 2. To benchmark/compare the Apache/Tag scenarios against known developments in other countries, especially those that are now producing unconventional "tight oil" resources.
- 3. To provide alternative development scenarios (if warranted) based on information that is publically available, and from discussions with and documents from GNS Science.

The overall aim of this study is to assist MBIE and the participating East Coast Regional councils in assessing the potential impacts and the potential rewards should the exploration testing of the Waipawa and Whangai formations in these regions prove commercially viable oil production.

2.2. Scope

The study objectives were met by conducting data reviews, comparison analyses, and analytical forecasting and modelling of the geological and testing data from these formations on the East Coast, and by reviewing potentially analogous oil exploration/development plays, and by detailed study of the geology and development scenarios supplied by Apache and their partner Tag Oil.

As part of assessing the impact and contribution of potential discoveries in the region a series of Oil Development Scenario Models were made that encompass the range of potential development sizes. These models included forecasts for all product streams, of exploration and development CAPEX, fixed and variable OPEX, administration, abandonment and of royalties, with the technical basis for these forecasts documented.

2.3. Deliverables

The deliverables agreed for this study were;

- i. A report detailing the findings and conclusions relating to the study objectives.
- ii. Recommendations for further work if applicable.
- iii. A formal presentation of the key findings of the study to the Ministry (MBIE) at a time to be agreed but no later than 10 business days after the submission of the report. The format of the presentation will be agreed between MARE and the Ministry.
- iv. Following the submission and presentation of the Report by MARE, the Ministry shall provide feedback and comments to MARE for inclusion in a revised Report, if required.

2.4. Disclaimer

The statements, analyses, recommendations, and conclusions presented in this work are based on the application of oil and gas industry best practice and standard analysis techniques, diverse international and domestic experience, on the information made available to MARE by the client and its representatives, and on that available in the public domain. MARE, therefore, states that whilst making best endeavours to ensure the accuracy of the work presented herein, MARE cannot guarantee the accuracy of these interpretations and analyses.

3. Data Sources

The following section details the sources of the technical and financial data used in the compilation of the Development Scenario Models. The data itself is summarized in the relevant tables in subsequent sections rather than repeated here.

3.1. Public Domain

The following sources were consulted, particularly when considering analogue reservoirs:

- i. "Review of Emerging Resources: U.S. Shale Gas and Shale Oil Plays", U.S. Energy Information Administration (EIA), July 2011.
- "Diagenesis and Fracture Development in the Bakken Formation, Williston Basin: Implications for Reservoir Quality in the Middle Member" By Janet K.
 Pitman, Leigh C. Price, and Julie A. LeFever. US. Geological Survey Professional Paper 1653. From Web location <u>http://pubs.usgs.gov/pp/p1653/</u>
- iii. "Characterization of the Bakken System of the Williston Basin from Pores to Production; The Power of a Source Rock/Unconventional Reservoir Couplet" by Anne Grau1 and Robert H. Sterling. AAPG Search and Discovery Article #40847, Dec, 2011.
- iv. "Statistical Handbook for Canada's Upstream Petroleum Industry" by Canadian Association of Petroleum Producers, November 2010.
- v. "Production Forecasting in Low-Permeability Oil and Gas Reservoirs", by John Lee, University of Houston. SPE Presentation, 17 May 2012.

3.2. Provided by MBIE

The data supplied by MBIE and NZ Petroleum and Minerals (NZPAM) included:

- a. Trans-Orient Petroleum Ltd Resource Estimation & Economic Evaluation Report (Sept 2008)
- b. "Technical Assessment of the Undiscovered Hydrocarbon Resource Potential of PEP 38348 and 38349, Onshore, East Coast Basin, New Zealand, as of September 30, 2007" by Sproule Petroleum Consultants, Calgary, for Trans-Orient Petroleum Ltd.
- c. Apache/TAG Powerpoint presentation Resource Development Scenarios (July 2012)
- d. Apache/TAG Powerpoint presentation Resource Parameter Explanations (July 2012)

Well Completion Reports and Associated Data was obtained (via NZPAM database) for the following wells;

- Rere-1
- Opoutama-1
- Hukarere-1 (offshore)

3.3. Provided by GNS Science

Discussions were held with GNS personnel on September 11, 2012. A series of maps and notes were taken and GNS subsequently produced a summary of the relevant geological input as report "Geological Input into the Evaluation of a Potential East Coast Resources Play", GNS report 2012/250 by Bland, K.J and Quinn, R. (GNS, Sept 2012).

In addition, an earlier GNS Report 2009/13 "Geochemical database and interpretation of 10 oils from several New Zealand basins" by Zink, K.G. and Sykes, R (GNS, Nov 2010) was consulted for the oil densities, and hence oil properties, to be used in the modelling. The oil densities are based on those measured at seeps on the East Coast.

3.4. Capital Expenditure Data

Development Capital Expenditure was derived from both public domain and private sources, the public domain sources include development expenditure for similar onshore developments in North America and Australia.

Drilling and fracturing costs for current/recent onshore Taranaki developments also generally available from public domain sources or from proprietary cost databases used by MARE. Initial drilling, stimulation, and testing costs for the East Coast were loaded with an additional 25% over the equivalent Taranaki based activity to compensate for the distance from existing support infrastructure and services. In addition, Apache have supplied their own estimates for the drilling, completion and stimulation of exploration and production wells within their permits. These are generally lower than those estimated by the author of this report but are possibly achievable if the exploration and testing is very successful and activity levels are high. Apache's development costs are used in Scenario families 4 and 5.

Item by item CAPEX Tables are included in the spreadsheet models compiled as part of this study and are summarised below in Table 2.

Table 2 East Coast Oil Development CAPEX Assumptions

Confidential and Commercially Sensitive material has been removed from this part of the document.

3.5. Operating Expenditure Data

Operating Costs have been extrapolated from those of current NZ onshore Operators as reported to Crown Minerals in the Half Yearly returns. For the East Coast areas these costs have been loaded an additional 20% to cover the lack of supporting oil and gas infrastructure in these areas.

Item by item OPEX Tables are included in the spreadsheet models compiled as part of this study and are summarised below in Table 3.

Table 3 East Coast Oil Development OPEX Assumptions

Confidential and Commercially Sensitive material has been removed from this part of the document.

3.6. Financial Data

The financial parameters/assumptions used in the development modelling scenarios are listed below in Table 4.

	Units	Comments	2012	2013	2014	2015	2016	2017	2018	2019	2020
NZ/US \$ Exchange	na	MBIE supplied. Flat assumption from 2017 on.	0.79	0.79	0.76	0.71	0.66	0.65	0.60	0.60	0.60
USD Oil Price (Brent)	US\$ /stb	MBIE supplied.	110.2	107.8	102.4	106.3	108.7	111.0	113.4	115.7	118.1
NZ Oil Price	NZ\$ /stb	Calc from MBIE Price & Exchange	121.2	122.8	126.9	132.9	138.9	141.2	147.2	148.5	149.8
Gas Price - < 1.92 PJ pa	NZ\$/GJ	No Market Condition	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Gas Price - Q < 10 PJ pa	NZ\$/GJ	Flat for local market uses	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0
Gas Price - Q < 30 PJ pa	NZ\$/GJ	Export in greater NZ	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Gas Price - For Power Gen	NZ\$/GJ	Needs >5 years at >10PJ pa	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
Gas Price - For GTL	NZ\$ /GJ	Needs >10 years at >30PJ pa	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Carbon Price	NZ/GJ	Flat from NZPAM	-1.5	-1.5	-1.5	-1.5	-1.5	-1.5	-1.5	-1.5	-1.5
NZ Inflation Rate	fraction	2012 rate to RBNZ upper target of 3%	2.7	2.8	2.9	3	3	3	3	3	3

 Table 4 Financial Assumptions (Table Truncated at 2020 for Display purposes)

4. Discussion

4.1. East Coast Regional Geology (GNS, Sep. 2012)

The regional geology with respect to the resource play Waipawa and Whangai Formations has recently been reviewed and summarised by GNS Science (GNS, Sep 2012). This report includes the following key observations:

- i. The Whangai and Waipawa formations do not represent "shale oil" or "shale gas" plays; rather, we consider them to be tight, conventional oil or gas plays, reservoired within silts and minor sands.
- ii. Waipawa and Whangai maturity estimates based on present-day depths of burial will underestimate any potential resource. There is a need to take account of uplift history.
- iii. The Gross Rock Volume (GRV) of Whangai and Waipawa Formation source rock within the present-day oil window is estimated to be 144 km3

The Whangai and Waipawa formations are regarded as being the two most important petroleum source rocks in the East Coast region. On the basis of geological mapping and a few drill-hole penetrations, the formations are known to occur in northern and eastern Wairarapa, central and coastal Hawke's Bay, and the Gisborne-Raukumara areas. Outcrops are reasonably common in most of these areas (Figure 2).

Although the Waipawa Formation is considered the best source rock in the region, it has a patchy distribution and is generally fairly thin (2–50 m thick, average 17 m). Because the Waipawa Formation is so thin, it cannot be readily mapped as a separate geological unit at a regional scale; therefore, it has traditionally been incorporated within the Whangai Formation mapping unit. Both units have been considered seperately in the 2012 GNS work which has produced GRV estimates for the Waipawa Formation as well as the Whangai, based on the few data available, as well as estimates of average thicknesses. These are shown in Table 5 which is based on the GNS report Tables 3 and 4 combined. Figure 1 following illustrates the various structural blocks referred to in Table 5 (Both based on reference GNS, Sep 2012).

Structural Blocks (North to South)	Est. Area Waipawa & Whangai Fms (km2)	Whangai Thk (m)	Whangai GRV (km3)	Waipawa Thk (m)	Waipawa GRV (km3)	Total Source GRV (km3)
	2 (2 5	(00)	2 101	10	26	0017
E.Coast Allocthon	3635	600	2181	10	36	2217
Eastern Sub-Belt						
Nth	1320	600	792	10	13	805
Motu North	1175	375	441	15	18	458
Motu South	3940	70	276	15	59	335
Pongoroa North	1895	300	569	40	76	644
Pongoroa South	2160	470	1015	5	11	1026
Coastal North	656	200	131	5	3	134
Coastal South	1030	355	366	25	26	391

	0 11/1 • 4		
I ADIE S GINS EXTIMATES OF WAL	nawa 🐼 wnangai Area g	ind G-ross-Rock volume	IC-RVIIN THE EAST COAST
Table 5 GINS Estimates of War	$pawa \propto w nanzar ma ca c$	ind Gross-Rock volume	(OIX) / III the East Coast.
			()

The GNS report (Sep, 2012) also discusses the carbon content of the Waipawa and Whangai Formations and while these are variable, with the Waipawa generally richer than the Whangai, the TOC (Total Organic Carbon) content for the Whangai is on average relatively low at 0.56 weight % (these values are useful in comparison to analogue rocks) and that for the Waipawa 3.6 weight %. However, the areas covered and the volume of rock in the Whangai in particular, as shown in Table 4, is substantial and the opportunity for large volumes of hydrocarbon to be generated from these rocks does exist.

Table 5 is a summary of typical reservoir properties for the Waipawa and Whangai Formations.

Parameter	Waipawa	Whangai
Depth (m)	1950	2000
Average Thickness (m)	20	300
Porosity (%)	4 - 8	4 - 8
Initial Oil Saturation (%)	40 - 75	40 - 75
Total Organic Content (TOC) (% wt)	3.6	0.56

Table 6 Waipawa and Whangai Formations – Typical Reservoir Properties

Figure 1 EC Structural Blocks & Interp. Outcrop/Subsurface Whangai/Waipawa Fm (GNS, Sep 2012)

4.2. Analogous Plays

The following is an editted excerpt from the Jul 2011 U.S. EIA review of Emerging Resources (U.S. EIA, July 2011).

Resource, or shale, plays in the U.S and elsewhere didn't become commercially viable until experimental testing of technologies by Mitchell Energy and Development Corporation during the 1980s and 1990s made deep shale gas production a commercial reality in the Barnett Shale in North-Central Texas (U.S. EIA, July 2011). As the success of Mitchell Energy and Development became apparent, other companies aggressively entered the play, so that by 2005, the Barnett Shale alone was producing nearly 0.5 trillion cubic feet of natural gas per year. As producers gained confidence in the ability to produce natural gas profitably in the Barnett Shale, with confirmation provided by results from the Fayetteville Shale in Arkansas, they began pursuing other shale plays, including Haynesville, Marcellus, Woodford, Eagle Ford, and others. These plays are now being actively pursued globally.

The technologies that have been successfully applied to make these shale plays viable are primarily the use of horizontal drilling in conjunction with multi-stage (i.e. multiple fractures placed along the horizontal wells) hydraulic fracturing has greatly expanded the ability of producers to profitably recover natural gas and oil from low-permeability plays, such as shale plays.

The application of fracturing techniques to stimulate oil and gas production began to grow rapidly in the 1950s, although experimentation dates back to the 19th century. Starting in the mid-1970s, a partnership of private operators, the U.S. Department of Energy (DOE) and predecessor agencies, and the Gas Research Institute (GRI) endeavoured to develop technologies for the commercial production of natural gas from the relatively shallow Devonian (Huron) shale in the eastern United States. This partnership helped foster technologies that eventually became crucial to the production of natural gas from shale rock, including horizontal wells, multi-stage fracturing, and slick-water fracturing. The practical application of horizontal drilling to oil production began in the early 1980s, by which time the advent of improved down-hole drilling motors and the invention of other necessary supporting equipment, materials, and technologies had brought some applications within the realm of commercial viability.

With respect to the reserves and recovery from shales, the EIA report (page 6) includes the following;

There is considerable uncertainty regarding the ultimate size of technically recoverable shale gas and shale oil resources, including but are not limited to the following:

- Because most shale gas and shale oil wells are only a few years old, their long-term productivity is untested. Consequently, the long-term production profiles of shale wells and their estimated ultimate recovery of oil and natural gas are uncertain.
- In emerging shale plays, production has been confined largely to those areas known as "sweet spots" that have the highest known production rates for the play. If the production rates for the sweet spots are used to infer the productive potential of entire plays, their productive potential probably will be overstated.
- Many shale plays are so large (e.g., the Marcellus shale) that only portions have been extensively production tested.

- Technical advancements could lead to more productive and less costly well drilling and completion.
- Currently untested shale plays, such as thin-seam plays or untested portions of existing plays, could prove to be highly productive.

The EIA Review provides a detailed over-view of the shale gas and oil production in the U.S. and includes summaries of the key parameters of the oil producing Bakken and Eagleford shales, amongst others. Hence the recovery statistics that are quoted in the following section should be treated as indicative, and not as absolutes.

4.2.1. The Bakken Shale

The Baaken Shale has been indicated (Ferguson/Apache, 2012) to be a useful analogy to the Waipawa and Whangai Formations and a summary of the Bakken Shale Oil Play based on U.S. EIA, 2011, is included below.

The Bakken shale oil play is located within the Williston Basin in Montana and North Dakota as shown in Figure 2. The oil shale extends into the Canadian provinces of Manitoba and Saskatchewan. The U.S. portion of the Bakken shale has been estimated to contain 3.65 billion barrels of oil.

Figure 2 Location of the Bakken Oil Shale Play (Onshore U.S.) (EIA, 2011)

Based on the combined net leased acreage for Bakken shale, the area is approximately 6,522 square miles within the United States. And the shale oil play has an average EUR of 550 MBO per well (i.e. 0.5 million barrels of oil) and approximately 3.59 Billion bbl of technically recoverable oil.

The Bakken shale ranges from 4,500 to 7,500 feet deep (i.e. 1370 to 2290 m) with a mean of 6,000 feet (i.e. 1830 m) and an average thickness of 22 feet (6.7 m). According to Kodiak Oil and Gas Corporation and other companies, the typical development well spacing ranges from 320 to 1,280 acres per well with a mean of 640 acres per well (i.e. 1 well per square mile). The typical reservoir properties for the Bakken from the EIA Review (July 2011) are shown in Table 7.

Parameter	Value
Depth (m)	1830
Thickness (m)	7
Porosity (%)	8
Initial Oil Saturation (%)	68
Total Organic Content (TOC) (% wt)*	11 - 20

Table 7 Bakken Oil Shale – Typical Reservoir Properties

* from Grau and Sterling (Dec 2011)

The well costs for the Bakken have trended down with time and in 2011 the costs ranged from US\$5.5 to 8.5 million per well, i.e. NZ\$7 to 10.8 million per well. In addition the operating costs are reported at less than US\$5 per barrel (EIA, July 2011).

4.2.2. The Eagle Ford Shale

The Eagle Ford shale gas and oil play is located within the Texas Maverick Basin. This play contains a high liquid component and this has led to the definition of three zones: an oil zone, a gas-condensate zone, and a dry gas zone within the shale fairway.

The July 2011 EIA Review reports that the Eagle Ford has an average EUR of 5.0 Bcf per well (gas well) and 300 MBO per well (oil well). The shale gas and shale oil plays have approximately 20.81 Tcf of technically recoverable gas and 3.35 Bbbl of technically recoverable oil. In the Eagle Ford oil play, the well densities are typically 5 wells per square mile, up from 1 in the Bakken.

Typical reservoir properties for the Eagle Ford from the EIA Review (July 2011) are shown in Table 8.

Parameter	Value
Depth (m)	2180
Thickness (m)	62
Porosity (%)	9
Initial Oil Saturation (%)	-
Total Organic Content (TOC) (% wt)	4.25

 Table 8 Eagle Ford Oil Shale – Typical Reservoir Properties

The well costs for the Eagle Ford are lower than the Bakken at US\$4 to 6.5 million per horizontal well (i.e. NZ\$5.1 to 8.3 million per well).

4.3. Comparison of Analogies

In comparing the analogous plays with the East Coast, it is important to bear in mind that the regional structural framework is completely different. The Bakken, and Eagle Ford shales are in stable mid-continental locations where the degree of faulting and deformation has been minor in recent geological time. By contrast, the East Coast of the North Island is immediately west of an active subducting continental plate boundary and is the site of large allocthonous geological sections and of extensive recent faulting has made all of the regional geology essentially made up of small geological blocks which increases the likelihood that any hydrocarbons that may have been generated within the Waipawa or Whangai formations have already migrated up through section either into shallower formations and/or to seeps and substantial volumes are unlikely to remain trapped within the source rocks or the adjacent silt and sandstones.

At face value, the similar depths and porosity values of the Bakkan, Eagle Ford and Waipawa/Whangai formations indicate that the analogy may be useful. However, the highest East Coast TOC values are in the thin Waipawa shale (3%) whereas the lowest analogous TOC is that in the Eagle Ford at 4.5% and in a substantially thicker unit (17m average c.f. 62m). This implies that the Waipawa has oil potential but that the volumes may not be substantial. The Whangai has a very low TOC at 0.56% but is much thicker at an average of 300m, than either the Bakken or Eagle Ford, so despite its lower carbon content, hydrocarbons generated from this formation may be substantial, and if they remain trapped within the Whangai then they may be producible using the application of Bakken style technologies.

Note that the Bakken and Eagleford Formations are predominantly gas-prone shales, but specific areas are oil-prone rather than gas and these analogies are the ones that have been considered in this assessment report.

5. Modelling Basis and Assumptions

For each development scenario, a model encapsulating the development size and types were made as spreadsheet models. These models were used to identify commercial thresholds for hydrocarbon accumulations on the basis of well yields and development costs, resource size and location (e.g. distance from infrastructure).

Screening level economics were conducted when making the development model for each field size in order to optimise the development scenario economics for a number of wells and production capacities and plateau lengths. These were also used in determining the appropriate commercial thresholds for field developments and for the application of incremental development technologies, e.g. when gas sales become viable.

- 1. Production forecasts were developed using the GNS and analogue data for some scenarios and from the those combined with data and forecast assumptions provided by Apache/Tag for the Scenario 5 based cases
- 2. The initial well deliverability was forecast using analytical inflow models of tight oil multi-stage fractured horizontal wells. These models were based on expected reservoir fluid properties, pressures, permeabilities and recoveries by well, predominantly derived from the GNS data.

- 3. Production forecasts for the full field scenarios were built up by adding wells in the drilling sequence(s) until the available well deliverability fills the available production plateau. The production plateau rates required iterations after the first pass through the economics model to optimise the NPV and VIR.
- 4. The financial assumptions are discussed in a subsequent section.
- 5. The Screening Economics are based on a conventional discounted cash-flow model with inputs of forecasts of expenditures (capital and fixed and variable operating), and of product streams.
- 6. After the first pass through the economics models an iterative step is taken to optimise the capital expenditure versus production rate plateau length. This typically involves changing well numbers and facilities costs to match the changed well numbers. This iteration stops when further gains in NPV & VIR are hard to make.
- Output forecast streams including royalty and tax revenues, and project/scenario NPV & VIR. In addition some basin commercial thresholds and unit costs with respect to field size are determined.

5.1. Reservoir Conditions

The Waipawa and Whangai Formations have been both mapped at surface (GNS, Sep 2012) and intersected sub-surface in a number of the East Coast wells. The depths to the Whangai, which is immediately overlaid by the Waipawa Formation (2 to 50 m – average 17m in thickness) when it is present, are summarized in Table 9.

Well	Depth to Top Whangai Fm (mAH)	Whangai Fm Thickness (m)	Mud. Grad. at Whangai (ppg)	Pressure at 2000m TV (psia)	
Opoutama-1 (1967)	1469	734	na	na	
Rere-1 (1985)	1990	392	12	4100	
Hakarere-1 (2001)	2764	323	>14	4800	
Normal Pressure	na	na	8.34	2840	

Table 9 Pressure Estimates Based on key Wells

Based on the existing drilled well results, it has been assumed that the average mid-depth of the Waipawa/Whangai Formation packages in the more prospective parts of the East Coast region is 2000 mTV and that the formations at that depth are substantially over-pressured, i.e. an average formation reservoir pressure of 4100 psia has been assumed for both fluid properties and production rate estimates

The geothermal temperature gradients in the East Coast are marginally depressed, i.e. lower temperatures than normal, when compared to those in Taranaki where the normal temperature gradient is approximately 3 deg.C per 100m of burial (Adams, Oct 2009). For this study a temperature gradient of 2.7 deg.C per 100m, i.e. 75 deg.C or 167 deg.F, has been assumed when calculating the oil fluid properties.

5.2. Rock Properties

The Waipawa and Whangai Formations have been intersected in a number of East coast wells and a review of the wireline log data from the Hukarere-1, Opuotama-1 and Rere-1 shows the

inter-bedded nature of these formations and that the porosities are in the range of 4 to 8% and the water saturations in the range of 40% to more than 75%.

Permeabilities are not normally directly measured by wireline logs but can be inferred from porosity-permeability relationships for the fine grained sands and silts and have been assumed to be in the order of 0.025 mD. These estimates are significantly higher than the permeabilities typically seen in the North American Bakken Fm which are typically 0.001 mD or less through to 0.01 mD (Grau & Sterling, 2011).

5.3. Recovery By Well

The analogy data, summarized in section 4 indicates that a typical Bakken well will recover 0.55 million barrels of oil equivalent and the Eagle Ford wells slightly less at 0.3 million BOE.

Apache (Ferguson 2012) has suggested that the thicker formations on the East coast may see up to 1 million BOE per well and they have used this number in deriving their development scenarios.

For this study, three different recovery cases were made;

- i. A single well model was made using the analytical well modeling software Saphir (from Kappa Engineering) and forecasts were made using this to give the shape of the production declines and a well recovery of 0.45 million barrels.
- ii. The Bakken well EUR of 0.55 million BOE with the production decline by well scaled from case i.
- iii. The Apache provided well EUR of 1 million BOE with the production decline by well scaled from case i.

These well recoveries were used for Scenarios 3, 4, and 5 respectively.

5.4. Screening Level Financial Models

In creating the development scenario models, a simplified NPV based economic model has been built (as a MS Excel spreadsheet). This optimises the development production rates and associated CAPEX and OPEX. The modelled NPV is based on forecasts of variable price(s), NPV discount rate, exchange rates, and inflation assumptions. An example of the spreadsheet inputs and calculations is shown in Table 10 below.

Table 10 Example Financial Model Inputs

Case Description	O3	PS for 25	500 stb/	d									
	Assumes	Gas Re	-inject	ion via	2 Dedi	cated W	Vells						
	Current												
	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	
Inputs													
Ann. New Exploration Well Count			1	1									Well Count
Ann. New Production Well Count					1								
Ann. New Injection Well Count													
Capital													
Exploration G&G	2	2	2	2									
Exploration Seismic													Canital Expenditure by
Exploration & Appraisal Wells			12	12	0	0	0						Cupital Experiaterie by
Development Seismic				1.3									year.
Development Wells					10	0	0						
Subsea Equipment & Flowlines													
Platform/FPSO													
Process Plant				7.50	9.50								
Export Pipelines				1.13	3.38								
Onshore Power Generation (50 PJ pa)													
Abandonment										5			
Abandonment Platform/Installation													
Other													
Operating (Fixed)													Fixed Operating
G&A					2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	rixed Operating
OPEX Baseline (incl well re-entries etc)					5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	Expenditure by year.
Operating (Variable)													
Gas Processing (per GJ)	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	Variable Onerating
LNG Cooling and Liq/Storage (NZ\$ per GJ)													variable operating
Liquids Treatment (NZ\$ per bbl)	3.50	3.50	3.50	3.50	3.50	3.50	3.50	3.50	3.50	3.50	3.50	3.50	Expenditure unit by by
Water Treatment (NZ\$ per bbl)	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	vear.
Other				•									
Production Forecasts													
Producing Year					1	2	3	4	5	6	7	8	
Gas Rate (mmscf per day)					1.00	1.00	0.99	0.98	0.63	0.36	0.20	0.12	
Gas Fuel & Flare (mmscf per day)					0.05	0.05	0.05	0.05	0.03	0.02	0.01	0.01	Production Forecasts for
Cum. Gas incl Fuel (Bscf)		0.0	0.0	0.0	0.2	0.5	0.7	1.1	1.3	1.4	1.5	1.6	all product streams
Cum Sales Gas, i.e less Fuel (Bscf)			0.0	0.0	0.3	0.5	0.9	1.2	1.4	1.5	1.6	1.7	an product streams
Sales Gas, i.e less Fuel etc (PJ pa)		0	0	0	0	0	0	0	0	0	0	0	
LNG Sales Gas (PJ pa)		0	0	0	0								-
LNG Sales Gas Cumulative (PJ)		0	0	0	0								-
Oil/Condensate (stb per day)		0	0	0	2000	2000	2000	2000	1306	751	432	248	
Cum. Oil/Condensate (mmstb)		0.0	0.0	0.0	0.7	1.5	2.2	2.9	3.4	3.7	3.8	3.9	4
LPG (t/day)										-			-
Produced Water (stb per day)		0	0	0	5	5	60	120	121	95	71	50	4
Cum. Prod. Water (mmstb)		0	0	0	0	0	0	0	0	0	0	0	4
Injected Water (stb per day)					2405	2405	2460	2520	1687	996	588	348	
Cum. Inj. Water (mmstb)		0	0	0	1	2	3	4	4	5	5	5	

The calculations and model outputs are illustrated in Table 11 below for an example model taken from a prior report using the same methodology (Adams, 2009) carried out for the Ministry in 2009. Note that the economic cut-off is determined by the year in which the Net Cash-flows become negative after the start-up of production.

Table 11 Example Financial Model Calculations & Outputs

	Current 2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	
													-
Outputs													Conital spond
Capital (NZ\$ mm) (inflation adj.)	2.00	2.10	15.44	27.64	27.80	0.00	0.00	0.00	0.00	7.76	0.00	0.00	Capital spenu
Operating (Fixed NZ\$ mm) (inflation adj.)	0.00	0.00	0.00	0.00	8.51	8.93	9.38	9.85	10.34	10.86	11.40	11.97	Fixed Opex Spend
Operating (Variable NZ\$ mm)	0.00	0.00	0.00	0.00	3.74	3.60	4.13	4.35	2.98	1.81	1.09	0.66	1 1
Gas Processing NZ\$ mm (inflation adj.)	0	0	0	0	1	0	1	1	0	0	0	0	
Liquids Trans./Treatment NZ\$ mm (inflation adj	.)	0	0	0	3	3	3	4	2	1	1	1	Variable Opex Spend
Water Treatment NZ\$ mm (inflation adj.)	0	0	0	0	0	0	0	0	0	0	0	0	· ····································
Percenues	0.00	0.00	0.00	0.00	60.41	72.28	79 20	82.02	57.64	25.42	21.95	12.44	
Cas (NZ\$ mm as) inflation adjusted	0.00	0.00	0.00	0.00	09.41	1.42	/8.20	82.92	57.04	35.43	21.85	13.44	
Ol/Candenanta (NIZ [®] mm na) inflation adj	0.00	0.00	0.00	0.00	2.34	70.95	75.06	20.62	2.00	22.49	20.20	12.41	Revenues
Oil (NZ\$ mm na) - inflation adi	0.00	0.00	0.00	0.00	00.87	70.85	75.00	19.52	34.98	33.46	20.39	12.41	Revenues
On (1420 han pa) innation adj.													
DCF Analysis													
Net Revenue	0.00	0.00	0.00	0.00	57.16	59.74	64.69	68.72	44.31	22.77	9.36	0.81	
AVR 5%	0.00	0.00	0.00	0.00	2.86	2.99	3.23	3.44	2.22	1.14	0.47	0.04	Discounted Cashflow
APR 20%	0.00	0.00	0.00	0.00	8.10	7.92	10.12	11.77	7.48	3.46	0.64	0.00	Analysas
Depreciation Scale	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	Analyses
Cum. Capital	2.00	3.50	17.89	40.16	55.92	39.14	27.40	19.18	13.43	17.15	12.01	8.41	
Capital Depreciation	0.00	0.60	1.05	5.37	12.05	16.77	11.74	8.22	5.75	4.03	5.15	3.60	
Capital Cost	0	0	1	3	5	3	2	2	1	1	1	1	
Net Revenue less Cap.Cost		-0.88	-2.49	-8.65	40.48	39.61	50.58	58.85	37.40	17.31	3.18	-3.52	Net Revenues
Cum Net. Revenue less Cap. Cost	0.0	-0.9	-3.4	-12.0	28.5	68.1	118.6	177.5	214.9	232.2	235.4	231.9	
Net Rev+Depr.+Cap.Cost+Royalty	0.00	-0.88	-2.49	-8.65	32.38	31.69	40.47	47.08	29.92	13.85	2.54	-3.52	Taxes and Royalties
Net Rev+Depr.+Cap.Cost+Royalty+Tax	0.0	-0.9	-2.5	-8.7	22.7	22.2	28.3	33.0	20.9	9.7	1.8	-2.5	
NPV Calc (Ex.Royalty)	\$88	mm											
NPV Calc (Incl.Royalty)	\$50	mm	\sim										Final NPV and VIR
NPV Calc (Incl.Royalty and Taxes)	\$33	mm		-									
VIR Calc (Inc.Royalty and Taxes)	\$38	PV Futur	e Cashf	ows									
	\$45	PV Inves	stment										
	0.83	VIR]

6. Development Model Descriptions

Following on from the geology and geophysics, plus the data from prior wells and the preliminary financial modelling to screen outcomes, 5 discrete Exploration/Appraisal/ Development scenarios were modelled taking into some duplication of commercially viable scenarios to account for multiple permit/larger area successes. The scenarios are shown in Table 12.

Tabl	e 12 Summary of the Development Scenar	ios as Mo	odelled
#	Saanania	Amoo	Decomintion

#	Scenario	Area	Description
1	E-mlanding and Conserve C-1	(km2)	
I	Exploration not Successful	NA	Planned 4 well Apache/ I ag campaign is unsuccessful
			4 Event Wells, Not modelled for there
2	Limited Euplanation guages but gub	NIA	4 Expl. Wells. Not modelled further.
2	commercial results	INA	successful and further exploration (including other
	commerciarresuits		narties) continues but no commercial production
			results
			12 Expl Wells. Not modelled further.
3	Limited success and commercially viable	100	Recovery of 0.45 million BOE per well.
-	production.		6 Expl. & Appraisal & 30 production wells drilled
	L		2015 through 2020
3A	3 of Scenario 3 with maximum of NZ\$1	300	Assumes limited success in 3 different areas of the East
	billion CAPEX spend per annum.		Coast. Development proceeds in the first area the
			others follow at 5 year intervals at a maximum spend
			rate of NZ\$1 billion per annum.
			6 Expl. & Appraisal & 3 x 30 production wells drilled
			2015 through 2025.
4	Intermediate exploration success and	260	Recovery of 0.55 million BOE per well.
	average N.American shale oil yields.		10 Expl. & Appraisal & 600 production wells drilled
			2017 through 2030 from 50 sites.
4A	3 of Scenario 4 with maximum of NZ\$1	780	Assumes intermediate success in 3 different areas of
	billion CAPEX spend per annum.		the East Coast. Development proceeds in the first area
			the others follow at 5 year intervals at a maximum
-		2(0	spend rate of NZ\$1 billion per annum.
Э	Exploration success analogous with	260	Recovery of 1.0 million BOE per well.
	Anacha		2017 through 2020 from 50 sites
5 ^	Apache.	780	2017 tillougi 2030 flotif 30 sites.
JA	billion CAPEV spend per annum i e 3	/ 80	Assumes Scenario 5 mgn success in 5 unrerent areas of the East Coast. Development proceeds in the first area
	of the Anache Scenario		the fast Coast. Development proceeds in the first area
	of the Apache Scenario.		spend rate of NZ\$1 billion per annum
5B	6 of Scenario 5 distributed over 50 years	1560	Assumes two of Scenario 5A i.e. extreme success
	i e 6 of the Apache scenario	1500	across the entire region in 6 different areas of the East
	ne o or me ripuone sechurio.		Coast Development proceeds in the first area then
			others follow at 3 to 5 year intervals at a maximum
			spend rate of approximately NZ\$2 billion per annum.

6.1. Scenario 1 Unsuccessful Exploration

Assumes that Apache/TAG execute the currently planned 4 well campaign on the East Coast. Results are negative and discourage any further exploration by any party.

No development models were made of this scenario.

6.2. Scenario 2 Exploration Success But Not Commercial

Assumes the same initial campaign as Scenario-1, but with sufficiently encouraging results to inspire additional exploration work along the East Coast basins. It has been assumed that this will involve some 12 wells and that on completion of the exploration activity development is not commercially viable. At this point all the well sites are remediated and permits handed back.

No development models were made of this scenario.

6.3. Scenario 3 Limited Success & Commercially Viable

This scenario is based on the GNS supported estimates of rock properties and the associated tight-oil derived production forecasts for individual wells rolled up into a 6 exploration and 30 production well development. The development has been scheduled on the assumption of using 1 (one) rig continuously for 6 years, i.e. 30 development wells covering approximately 95 km2 at a density of approximately 1 development well per 2.6 km2 (1 sq mile).

The individual wells using the assumed reservoir properties will flow at an oil rate initially of approx. 1000 bopd declining at approximately 50% per annum initially. For simplicity in estimating the development costing, it has been assumed that this development is in the geographically (relatively) benign blocks to the SW of Napier, i.e. Pongoroa Blocks North and South (see Figure 1). Activity to the north, i.e. towards Gisborne or further north, will be even more remote and the terrain significantly more difficult and costs would be substantially (say 10 to 20%) higher to develop in this area.

The oil recovery per well used in this scenario is 0.45 million barrels of oil equivalent (mmboe) which is around 25% less than a typical Bakken oil shale well (U.S. EIA, 2011).

Oil and gas production would be consolidated at a central production station via buried pipelines. The stabilised crude oil would initially be trucked to New Plymouth for export,. However, it is likely that following an early stage of testing, port facilities would be set up locally, reducing the need for long distance trucking. Any associated gas production will be flared during initial exploration testing but once being produced via the pipeline system, the gas would be used to fuel the oil processing and any excess would be sold locally at a relatively low price.

The associated production forecasts, capital, operating costs, along with the screening level economics for this scenario are shown in Appendix 1 as Table 20. The forecast and economic parameters for this scenario are summarised in Table 13.

Parameter	Value	Comments
Developed Area (km2)	95	
Number of sites	9	4 Exploration sites
Number of Wells	6 + 30	6 Exploration wells
Years Production	11	
Plateau Oil Production Rate (stb/d)	5000	
Oil Recovery (mmstb)	14.3	
Gas Recovery (Bscf)	11.2	
Post Royalty & Tax NPV@20% (NZ\$ mil.)	165	
VIR	0.53	
Capital Invest. (2012 NZ\$ mill.)	791	Undepreciated cumulative

 Table 13 Scenario 3 Development Modelling Results

6.4. Scenario 3A Limited Success x 3

This scenario assumes that the success seen in Scenario-3 is replicated in two other permits/areas in the region, following on from the success of the first development. The subsequent developments are phased with 3-4 year delays and the number of working rigs is limited to 2. In this scenario, it is also envisaged that oil would be piped to new port facilities at Napier and/or Gisborne for export and that gas would also be piped to the local spurs of the North Island network.

The associated production forecasts, capital, operating costs, along with the screening level economics for this scenario are shown in Appendix 1 as Table 21. The forecast and economic parameters for this scenario are summarised in Table 14.

Parameter	Value	Comments
Developed Area (km2)	300	
Number of sites	19	4 Exploration sites
Number of Wells	6 + 90	6 Exploration wells
Years Production	21	
Plateau Oil Production Rate (stb/d)	15000	
Oil Recovery (mmstb)	41.8	
Gas Recovery (Bscf)	41.1	
Post Royalty & Tax NPV@20% (NZ\$ mil.)	267	
VIR	0.47	
Capital Invest. (2012 NZ\$ mill.)	2457	Undepreciated cumulative

Table 14 Scenario 3A Development Modelling Results

6.5. Scenario 4 Intermediate Success

This is identical to the Apache derived Scenario 5 with the exception of the well recoveries being the same as a typical Bakken shale oil well at 0.55 mmboe (instead of the 1 mmboe in Scenario-5) Hence the details of this scenario are discussed in that section.

The associated production forecasts, capital, operating costs, along with the screening level economics for this scenario are shown in Appendix 1 as Table 22. The forecast and economic parameters for this scenario are summarised in Table 15.

Table 1	5	Scenario	4	Development	Modelling	Results
---------	---	----------	---	-------------	-----------	---------

Parameter	Value	Comments
Developed Area (km2)	260	
Number of sites	56	6 Expl. Sites. 12 prod well/site
Number of Wells	10 + 600	10 Exploration wells
Years Production	29	
Plateau Oil Production Rate (stb/d)	70000	
Oil Recovery (mmstb)	303	
Gas Recovery (Bscf)	280	
Post Royalty & Tax NPV@20% (NZ\$ mil.)	1316	
VIR	0.75	
Capital Invest. (2012 NZ\$ mill.)	10642	Undepreciated cumulative

6.6. Scenario 4A Intermediate Success x 3

This scenario assumes that the success seen in Scenario-4 is replicated in two other permits/areas in the region, following on from the success of the first development. The subsequent developments are phased with 3-4 year delays and the number of wells drilled per annum is limited ensure that no more than NZ\$1 billion Capital is spent in any one year.

The associated production forecasts, capital, operating costs, along with the screening level economics for this scenario are shown in Appendix 1 as Tables 23 and 24. The forecast and economic parameters for this scenario are summarised in Table 16.

Parameter	Value	Comments
Developed Area (km2)	780	
Number of sites	156	6 Expl. Sites. 12 prod well/site
Number of Wells	10 + 1800	10 Exploration wells
Years Production	41	
Plateau Oil Production Rate (stb/d)	150000	
Oil Recovery (mmstb)	838	
Gas Recovery (Bscf)	916	
Post Royalty & Tax NPV@20% (NZ\$ mil.)	3023	
VIR	1.3	
Capital Invest. (2012 NZ\$ mill.)	39115	Undepreciated cumulative

Table 16 Scenario 4A Development Modelling Results

6.7. Scenario 5 Large Exploration Success

This scenario is very closely derived from that supplied by Apache (Ferguson, Jul 2012) and uses Apache's proposed costs, where available. This is based on the concept of developing 260 km2 of permit area in a pattern where there are 50 production well sites with 12 horizontal, multi-stage fracture stimulated wells per site. The The oil recovery per well used in this scenario is 1.0 million barrels of oil equivalent (mmboe), as described by Apache, which is around the upper end of the range observed in the Bakken oil shale (U.S. EIA, 2011).

As for the Scenario 3 model, oil and gas production would be consolidated at a central production station via buried pipelines. The stabilised crude oil during exploration testing would initially be trucked to New Plymouth for export. However, once development proceeds, notionally in 2017, pipelines and port facilities would be set up locally, removing the need for trucking. Any associated gas production will be flared during initial exploration testing but once being produced via the pipeline system, the gas would be used to fuel the oil processing and any excess would be sold, probably at a relatively low price.

The associated production forecasts, capital, operating costs, along with the screening level economics for this scenario are shown in Appendix 1 as Tables 25 and 26. The forecast and economic parameters for this scenario are summarised in Table 17.

Parameter	Value	Comments
Developed Area (km2)	260	
Number of sites	56	6 Expl. Sites. 12 prod well/site
Number of Wells	10 + 600	10 Exploration wells
Years Production	33	
Plateau Oil Production Rate (stb/d)	100000	
Oil Recovery (mmstb)	506	
Gas Recovery (Bscf)	547	
Post Royalty & Tax NPV@20% (NZ\$ mil.)	3245	
VIR	1.85	
Capital Invest. (2012 NZ\$ mill.)	10642	Undepreciated cumulative

Table 17 Scenario 5 Development Modelling Results

6.8. Scenario 5A Large Success x 3

This scenario assumes that the success seen in Scenario-5 is replicated in two other permits/areas in the region, following on from the success of the first development. The subsequent developments are phased with 3-4 year delays and the number of wells drilled per annum is limited ensure that no more than NZ\$1 billion Capital is spent in any one year.

The associated production forecasts, capital, operating costs, along with the screening level economics for this scenario are shown in Appendix 1 as Tables 27 and 28. The forecast and economic parameters for this scenario are summarised in Table 18.

 Table 18 Scenario 5A Development Modelling Results

Parameter	Value	Comments
Developed Area (km2)	780	
Number of sites	156	6 Expl. Sites. 12 prod well/site
Number of Wells	10 + 1800	10 Exploration wells
Years Production	41	
Plateau Oil Production Rate (stb/d)	225000	
Oil Recovery (mmstb)	1522	
Gas Recovery (Bscf)	1665	
Post Royalty & Tax NPV@20% (NZ\$ mil.)	6381	
VIR	2.73	
Capital Invest. (2012 NZ\$ mill.)	39115	Undepreciated cumulative

6.9. Scenario 5B Large Success x 6

This scenario assumes that the success seen in Scenario-5 is replicated in five other permits/areas in the region, following on from the success of the first development. The subsequent developments are phased with 3-4 year delays and the number of wells drilled per annum is limited ensure that no more than NZ\$2 billion Capital is spent in any one year.

The associated production forecasts, capital, operating costs, along with the screening level economics for this scenario are shown in Appendix 1 as Tables 29, 30, and 31. The forecast and economic parameters for this scenario are summarised in Table 19.

Parameter	Value	Comments
Developed Area (km2)	1560	
Number of sites	306	6 Expl. Sites. 12 prod well/site
Number of Wells	10 + 3600	10 Exploration wells
Years Production	64	
Plateau Oil Production Rate (stb/d)	225000	
Oil Recovery (mmstb)	3043	
Gas Recovery (Bscf)	3338	
Post Royalty & Tax NPV@20% (NZ\$ mil.)	6861	
VIR	2.86	
Capital Invest. (2012 NZ\$ mill.)	114127	Undepreciated cumulative

Table 19 Scenario 5A Development Modelling Results

7. References

Author	Title	Date	Publisher
Adams, M	Production and Cost Estimates	Oct	MA Reservoir Engineering Ltd,
	for New Zealand's Petroleum	2009	New Plymouth. Report MARE
	Resources		62.1_v1.3F prepared for MED
	Phase 1 Report Final	_	
Bland, K.J.;	Geological Input into the	Sep	GNS Science Consultancy
Quinn, R	Evaluation of a Potential East	2012	Report 2012/250. Lower Hutt
	Coast Resources Play		
САРР	Statistical Handbook for	Nov	by Canadian Association of
	Canada's Upstream Petroleum	2010	Petroleum Producers
	Industry	T 1	
Ferguson, A	Resource Development Scenarios	July	Apache MS PowerPoint
et al.	- East Coast New Zealand	2012	presentation given to NZPAM.
	Unshore, Unconventional		Apache Calgary.
	Petroleum Resources	D	
Grau, A; &	Characterization of the Bakken	Dec.	Adapted from oral presentation
Sterling,	System of the williston Basin	2011	at AAPG International
К.П.	Power of a Source		Milen Itely October 22.26
	Power of a Source Rock/Unconventional Reservoir		2011 Sourch and Discovery
	Couplet		Article #40847 (2011)
Loo I	Droduction Forecasting in Low	Mov	Alticle #40847 (2011)
Lee, J.	Pormoshility Oil and Cos	101ay	Prospectation 17 May 2012
	Reservoirs	2012	riesentation, 17 May 2012
Ianet K	Diagenesis and Fracture	2001	US Geological Survey
Pitman, J.K.:	Development in the Bakken	2001	Professional Paper 1653.
Price.L.C.:	Formation, Williston Basin:		From Web location
LeFever,	Implications for Reservoir		http://pubs.usgs.gov/pp/p1653/
J.A.	Quality in the Middle Member		
U.S. EIA	Review of Energing Resources:	July	U.S. Energy Information
	U.S. Shale Gas and Shale Oil	2011	Administration (EIA)
	Plays		
Various	Well Completion Reports	1959 to	Various
		2012	
Zink, K.G.	Geochemical database and	Nov	GNS Science Consultancy
& Sykes, R	interpretation of 10 oils from	2010	Report 2009/13, Lower Hutt
	several New Zealand basins		

8. Appendix 1 – Development Scenarios Forecast Sheets

Table 20 Scenario 3

Development Freemanies Model																		
Development Economics Model																		
MRA 25 Oct 2012																		
NPV (NZ\$mm 2012 Dollars)	\$418	Gross NF	V Pre Roy	alty & To	2X													
NPV (NZ\$mm 2012 Dollars)	\$165	Post Rove	utv & Tax	es														
Case Description	SC03	PS for 50	000 stb/d															
z	Assumes	Central	5000 b	opd Pro	duction	Statio	n and 5 l	Develop	ment w	ells per y	ear for	6 years.	. 100 ki	n2 of p	roducin	g area d	levelope	ed.
	Current	2012	2014	2015	2016	2017	2018	2010	2020	2021	2022	2022	2024	2025	2026	2027	2028	2020
Innuts	2012	2013	2014	2015	2010	2017	2018	2019	2020	2021	2022	2023	2024	2025	2020	2027	2028	2029
Inputs																		
Ann. New Exploration Well Count		3	3	-														
Ann. New Production Well Count				5	5	5	5	5	5									
Ann. New Injection Well Count																		
Capital	-			2	2	2		2										
Exploration G&G	2	2	10	2	2	2	2	2	2									
Exploration & Appraisal Wells	5.0	36	36	0														
Development Seismic																		
Sectophene Second																		
Development Wells				85	85	85	85	85	85									
Subsea Equipment & Flowlines																		
Platform/FPSO																		
Process Plant				27.50	27.50	2.60	2.60	2.60	2.50									
Onchora Power Generation (50 PL na)				2.50	2.50	2.50	2.50	2.30	2.50									
Abandonment											72							
Abandonment Platform/Installation																		
Other																		
Operating (Fixed)																		
G&A		2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00
OPEX Baseline (incl well re-entries etc)		3.00	3.00	12.00	12.00	12.00	12.00	12.00	12.00	12.00	12.00	12.00	12.00	12.00	12.00	12.00	12.00	12.00
Operating (Variable)																		
Gas Processing (per GJ)				1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Liquids Treat incl. Transport & Port etc (NZ\$ per bh)		17.00	17.00	17.00	17.00	17.00	17.00	17.00	17.00	17.00	17.00	17.00	17.00	17.00	17.00	17.00	17.00	17.00
Water Treatment (NZS per bbl)		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
(
Other - Gas F&F Carbon Cost (NZD/mscf)		1.43	1.43	1.43	1.43	1.43	1.43	1.43	1.43	1.43	1.43	1.43	1.43	1.43	1.43	1.43	1.43	1.43
Production Forecasts						-			0.642995									
Producing Year		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
Gas Fuel & Flore (mmscf per day)		3.30	5.05	5.47	5.50	5.50	5.50	5.50	3.54	1.00	1.40	0.94	0.60	0.39	0.25	0.10	0.10	0.07
Cum. Gas incl Fuel (Bscf)		0.6	1.5	2.5	3.5	5.5	6.6	8.6	9.9	10.7	11.2	11.6	11.8	11.9	12.0	12.1	12.1	12.1
Cum Sales Gas, i.e less Fuel (Bscf)		0.4	1.2	2.0	2.8	3.6	4.5	5.3	5.7	6.0	6.1	6.1	6.1	6.1	6.1	6.1	6.1	6.1
Sales Gas, i.e less Fuel etc (PJ pa)		0.4	0.7	0.8	0.8	0.8	0.8	0.8	0.5	0.2	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0
LNG Sales Gas (PJ pa)																		
LNG Sales Gas Cumulative (PJ)																		
BOE Cum		1.22	3.05	5.03	7.03	9.19	11.18	13.34	14.73	15.62	16.20	16.57	16.81	16.96	17.06	17.12	17.16	17.19
Cum Oil/Condensate (sto per day)		3059	4088	49//	5000	4997	5000	5000	3215	2007	1329	800	14.8	303	15.1	140	94	15.2
LPG (t/day)		1.1	2.0	4.0	0.4	0.5	10.1	11.9	15.1	15.0	14.5	14.0	14.0	15.0	15.1	15.1	15.1	15.2
Produced Water (stb per day)		3	229	249	250	250	250	250	161	103	66	43	27	18	11	7	5	3
Cum. Prod. Water (mmstb)		0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1
Injected Water (stb per day)																		
Cum. Inj. Water (mmstb)		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
																In	format	ion Be
Sales Price (NZS)																		
Gas (S per GJ)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Oil (Sper bbl)	110.19	107.80	102.39	106.30	108.00	111.02	113.38	115.74	118.10	119.94	121.78	123.62	125.40	127.30	128.74	130.18	131.62	133.06
Other (LPG etc)	110.15	107.00	102.55	100.50	100.00	111.02	115.50	115.74	110.10	115.54	121.70	125.02	125.40	127.50	120.74	150.10	151.02	155.00
Financial Model Assumptions																		
Capital Cost (% pa) Discount Pate (% pa)	8.00	8.00	8.00	8.00	8.00	8.00	8.00	8.00	8.00	8.00	8.00	8.00	8.00	8.00	8.00	8.00	8.00	8.00
Inflation Rate (% pa)	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00
Tax Rate (% na)	30.00	30.00	30.00	30.00	30.00	30.00	30.00	30.00	30.00	30.00	30.00	30.00	30.00	30.00	30.00	30.00	30.00	30.00
Outputs																		
Capital (NZS mm) (inflation adj.)	7.60	39.06	50.82	127.85	131.68	103.76	106.87	110.07	113.38	0.00	96.76	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Operating (Fixed NZS mm) (initiation adj.)	0.00	20.06	30.81	35 34	36.56	37.64	38 70	30.05	26.61	18.27	18.81	19.58	19.90	20.50	21.18	21.81	1.03	25.14
Gas Processing & Carbon NZ\$ mm (inflation adi.)	0.00	1 20.00	1	1	2	2	2	2	1	1/./0	11.94	1	0.00	0.00	2.34	1.55	1.05	0.00
Liquids Trans./Treatment NZ\$ mm (inflation adj.)		20	30	34	35	36	37	38	25	17	11	7	5	3	2	1	1	1
Water Treatment NZ\$ mm (inflation adj.)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0.00	122.00	101 60	211.16	222.25	224.02	247.24	250.06	175.60	110.16	70.46	52.42	25.00	24.12	1616	10.02	7.05	4.95
Gas (NZS mm na) - inflation adjusted	0.00	123.80	181.08	211.10	223.35	234.92	247.24	259.90	1/5.08	0.00	/9.40	0.00	0.00	24.13	0.00	0.00	0.00	4.85
Oil/Condensate (NZ\$ mm pa) - inflation adj.	0.00	123.80	181.68	211.16	223.35	234.92	247.24	259.96	175.68	118.16	79.46	53.42	35.90	24.13	16.16	10.82	7.25	4.85
Oil (NZ\$ mm pa) - inflation adj.																		
DCF Analysis						105.5	10											
AVD 59/	0.00	98.60	145.58	160.53	171.03	181.05	191.74	202.79	131.33	82.11	48.70	25.99	10.62	0.04	-7.35	-12.54	-16.24	-18.97
AVK 5%	0.00	4.95	25.12	24.19	8.00	9.05	9.39	16.75	0.57	4.11	2.44	1.30	0.00	0.00	0.00	0.00	0.00	0.00
Depreciation Scale	0.00	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.70
Cum. Capital	7.60	44.38	81.89	185.17	261.31	286.67	307.54	325.35	341.12	238.78	263.91	184.74	129.32	90.52	63.37	44.36	31.05	21.73
Capital Depreciation	0.00	2.28	13.32	24.57	55.55	78.39	86.00	92.26	97.60	102.34	71.64	79.17	55.42	38.79	27.16	19.01	13.31	9.31
Capital Cost	0	4	7	15	21	24	25	27	28	20	22	15	11	8	5	4	3	2
Net Revenue less Cap.Cost		92.77	125.61	120.95	94.12	79.08	80.43	83.74	5.63	-40.17	-44.64	-68.61	-55.61	-46.32	-39.81	-35.25	-32.15	-30.10
Cum Net. Revenue less Cap. Cost	0.0	92.8	218.4	339.3	433.4	512.5	593.0	676.7	682.3	642.2	597.5	528.9	473.3	427.0	387.2	351.9	320	290
Net Rev+Depr.+Cap.Cost+Royalty	0.00	74.22	100.49	96.76	75.30	63.27	64.34	66.99	4.51	-40.17	-44.64	-68.61	-55.61	-46.32	-39.81	-35.25	-32.15	-30.10
NPV Calc (Ex.Royalty)	0.0 \$419	52.0	70.3	07.7	52.7	44.3	45.0	40.9	3.2	-28.1	-31.3	-48.0	-38.9	-32	-28	-25	-23	-21
NPV Calc (Incl.Royalty)	\$236	mm																
NPV Calc (Incl.Royalty and Taxes)	\$165	mm	J															
VIR Calc (Inc.Royalty and Taxes)	\$193	PV Futur	e Cashflo	ws														
	\$363	PV Inves	tment															

Table 21 Scenario 3A

Development Economics Model																					
MRA 10 Oct 2012																					
NPV (NZ\$mm 2012 Dollars)	\$688	Gross NF	V Pre Roy	valty & To	IX.																
NPV (NZ\$mm 2012 Dollars)	\$267	Post Roya	alty & Tax	ces																	
Case Description	SC03A Assumes	3 of the	sC03 C	d gas pro C entral	cessing s 5000 be	ales with opd Pro	3 seperat	e develop Station	with 3	e. 15,000 b x 5 Devel	opd. Well opment	wells p	ates limit er year	ed by am: per Stat	aximum o tion for	f 2 rigs w 6 years	orking su phased	nultaneou 2-3 yea	isly. I rs apai	t (limite	d by 2 r
	Current	2012	2014	2015	2016	2017	2019	2010	2020	2021	2022	2022	2024	2025	2026	2027	2028	2020	2020	2021	2022
Inputs	2012	2013	2014	2015	2010	2017	2018	2019	2020	2021	2022	2023	2024	2023	2020	2027	2020	2029	2030	2031	2032
Ann. New Exploration Well Count		3	3											-							
Ann. New Production Well Count				5	5	5	10	10	10	10	10	10	10	5							
Capital Exploration G&G	2	2	2	2	2	2	2	2	4	4	4	4	4	2							
Exploration Seismic	5.6	5	10	-	2	10	2	-	10					2							
Exploration & Appraisal Wells Development Seismic		36	36	0																	
Development Wells Subsea Equipment & Flowlines				85	85	85	170	20	170	170	170	170	170	85							
Platform/FPSO				07.00	27.50			27.00	27.60	27.50	07.6										
Intra-field Pipelines				27.50	27.50	2.50	2.50	27.50	5.00	5.00	5.00	5.00	5.00	2.50							
Onshore Power Generation (50 PJ pa)																					102
Abandonment Platform/Installation																					172
Other																					
Operating (Fixed)										-											
G&A OPEX Baseline (incl well re-entries etc)		2.00	2.00	2.00 12.00	2.00 12.00	2.00	2.00	4.00	8.00 24.00	8.00 48.00	12.00	12.00	12.00 72.00	12.00 72.00	12.00 72.00	12.00 72.00	12.00 72.00	12.00 72.00	12.00 72.00	12.00 72.00	12.00 72.00
Gas Processing (per GJ)				1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
LNG Cooling and Liq/Storage (NZ\$ per GJ)		17.00	17.00	17.00	17.00	17.00	17.00	17.00	17.00	17.00	17.00	17.00	17.00	17.00	17.00	17.00	17.00	17.00	17.00	17.00	17.00
Water Treatment (NZ\$ per bbl)		1.00	1.00	1.00	1.00	17.00	1.00	1.00	1.00	1.00	17.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Other - Gas E&E Carbon Cost (NZD/mscf)		1.43	1 43	1 43	1 43	1 43	1 43	1 43	1 43	1 43	1 43	1 43	1 43	1 43	1 43	1 43	1 43	1 43	1 43	1.43	1 43
		1.15	1.15			1.15	1.15	1.15	1.15		1.15	1.15	1.15	1.15				1.15	1.15	1.15	
Production Forecasts Producing Year		1	2	3	4	5	6	7	8	9	10	11	12	0.701207	14	15	16	17	18	19	20
Gas Rate (mmscf per day)		3.36	5.05	5.47	5.50	5.50	7.15	9.90	13.20	16.50	16.50	11.57	8.11	5.69	3.99	2.80	1.96	1.38	0.96	0.68	0.47
Gas Fuel & Flare (mmscf per day) Cum. Gas incl Fuel (Bscf)		3.36	5.05	5.47	5.50	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00 38.1	2.00 39.1	2.00	2.00	2.00	2.00 40.9	2.00 41.1
Cum Sales Gas, i.e less Fuel (Bscf)		0.0	0.0	0.0	0.0	0.6	1.6	3.0	5.1	7.7	10.4	12.1	13.2	13.9	14.3	14.4	14.4	14.3	14.1	13.9	13.6
LNG Sales Gas (PJ pa)		0.0	0.0	0.0	0.0	0.0	0.9	1.4	2.1	2.1	2.1	1.8	1.1	0.7	0.4	0.1	0.0	-0.1	-0.2	-0.2	-0.3
LNG Sales Gas Cumulative (PJ)		1.2	2.0	5.0	7.0	0.2	11.0	15.7	20.0	27.2	22.0	20.4	41.6	42.0	45.4	46 5	47.2	47.0	49.1	49.4	49.6
Oil/Condensate (stb per day)		3059	4588	4977	5000	5000	6500	9000	12000	15000	15000	10518	7375	5172	3626	2543	1783	1250	877	615	431
Cum. Oil/Condensate (mmstb)		1.1	2.8	4.6	6.4	8.3	10.6	13.9	18.3	23.8	29.3	33.1	35.8	37.7	39.0	39.9	40.6	41.1	41.4	41.6	41.8
Produced Water (stb per day)		3	229	249	250	250	325	450	600	750	750	526	369	259	181	127	89	63	44	31	22
Cum. Prod. Water (mmstb) Injected Water (stb per day)		0	0	0	0	0	0	1	1	1	1	2	2	2	2	2	2	2	2	2	2
Cum. Inj. Water (mmstb)		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
																Tes	format	ion Rol	ow this	Tinoia	Davia
																	Tormat	юп Бе	ow this	Lineis	Dasic
Gas (\$ per GJ)	0.00	0.00	0.00	0.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00
Condensate (\$ per bbl)	110.19	107.80	102.39	106.30	108.66	111.02	113.38	115.74	118.10	119.94	121.78	123.62	125.46	127.30	128.74	130.18	131.62	133.06	134.50	135.60	136.70
Other (LPG etc)	110.15	107.00	102.57	100.50	100.00	111.02	115.50	113.74	110.10	110.04	121.70	125.02	123.40	127.50	120.74	150.10	151.02	155.00	154.50	155.00	150.70
Financial Model Assumptions																					
Capital Cost (% pa)	8.00	8.00	8.00	8.00	8.00	8.00	8.00	8.00	8.00	8.00	8.00	8.00	8.00	8.00	8.00	8.00	8.00	8.00	8.00	8.00	8.00
Inflation Rate (% pa)	20.00	20.00	20.00	3.00	3.00	3.00	3.00	3.00	20.00	3.00	3.00	3.00	20.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00
Tax Rate (% pa)	30.00	30.00	30.00	30.00	30.00	30.00	30.00	30.00	30.00	30.00	30.00	30.00	30.00	30.00	30.00	30.00	30.00	30.00	30.00	30.00	30.00
Outputs																					
Capital (NZS mm) (inflation adj.) Operating (Fixed NZS mm) (inflation adj.)	7.60	39.06	50.82	149.70	131.68	115.35	208.36	273.03	274.26	295.53	277.52	247.78	255.21	131.43	0.00	0.00	0.00	0.00	0.00	0.00	346.77
Operating (Variable NZ\$ mm)	0.00	21.33	33.04	36.99	38.27	38.05	50.71	71.99	98.59	126.71	130.51	94.54	68.57	49.82	36.29	26.52	19.48	14.40	10.75	8.12	6.23
Gas Processing & Carbon NZ\$ mm (inflation adj.) Liquids Trans/Treatment NZ\$ mm (inflation adj.)	0	2	30	3 34	3 35	2	2	3 69	4 94	5	5	4	3 65	3	2 34	2 25	2	2	1 9	1	1
Water Treatment NZ\$ mm (inflation adj.)	0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Revenues	0.00	123.80	181.68	211.16	223.35	238.02	325.92	475.05	666.12	871.26	910.95	667.10	488.25	357.10	260.13	189.28	137.51	99.68	72.03	51.69	36.85
Gas (NZ\$ mm pa) - inflation adjusted	0.00	0.00	0.00	0.00	0.00	2.97	4.51	7.12	10.40	13.87	14.28	9.71	6.39	3.97	2.21	0.91	-0.05	-0.76	-1.29	-1.70	-2.02
Oil (NZ\$ mm pa) - inflation adj.	0.00	125.80	181.08	211.10	223.35	255.04	321.41	407.95	055.72	857.59	890.00	057.59	401.07	355.15	251.95	100.57	157.55	100.45	15.52	33.39	38.87
DCF Analysis																					
Net Revenue	0.00	97.3	143.3	158.9	169.3	183.7	258.5	383.4	527.0	671.5	699.8	456.3	299.9	183.9	96.8	31.9	-16.8	-53.6	-81.7	-103.7	-121.1
AVK 5% APR 20%	0.00	4.9	7.2	7.9 23.5	8.5 16.9	9.2 15.1	12.9 26.2	19.2 41.9	26.3 60.1	33.6 81.3	35.0 80.5	22.8	15.0	9.2 0.0	4.8	1.6	0.0	0.0	0.0	0.0	0.0
Depreciation Scale	0.70	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7
Capital Depreciation	7.60	44.4	81.9	207.0 24.6	276.6 62.1	309.0 83.0	424.6 92.7	570.3	673.5 171.1	202.0	814.4 230.1	817.8 244.3	827.7 245.4	/10.8 248.3	497.6 213.2	348.3 149.3	243.8 104.5	73.1	119.5 51.2	83.6 35.8	405.3
Capital Cost	0	3.6	6.7	16.8	22.6	25.4	34.7	46.7	55.3	63.0	67.0	67.4	68.2	58.9	41.6	29.1	20.4	14.3	10.0	7.0	32.6
Cum Net. Revenue less Cap. Cost	0.0	91.5	214.9	332.4	84.6 417.0	492.4	623.4	832.7	1133.4	406.4	1942.5	2087.0	-13.7 2073.4	-123.3 1950.1	1792.0	-140.5 1645.5	1503.9	-141.0 1362.9	1220.0	1073.5	-178.8 894.6
Net Rev+Depr.+Cap.Cost+Royalty Net Rev+Depr.+Cap.Cost+Royalty-Tay	0.00	73.2	98.7	94.0	67.7	60.3	104.9	167.5	240.5	325.1	322.1	115.6	-13.7	-123.3	-158.0	-146.5	-141.6	-141.0	-142.9	-146.6	-178.8
NPV Calc (Ex.Royalty)	\$688	mm	09.1	05.8	47.4	42.2	/3.4	117.2	108.4	227.0	223.5	80.9	-9.0	-80	-111	-103	-99	-99	-100	-103	-125
NPV Calc (Incl.Royalty) NPV Calc (Incl.Royalty and Taxes)	\$381	mm																			
	3207																				
VIR Calc (Inc.Royalty and Taxes)	\$312 \$667	PV Futur PV Inves	re Cashflo stment	ws																	
	0.47	VIR																			

Table 22 Scenario 4

Development Economics Model																														
MRA 11 Oct 2012					CAPEX	Check																								
																														1437.5
NPV (NZ\$mm 2012 Dollars)	\$3,398	Gross N	PV Pre Ro	yalty & T	ax																									
NPV (NZSmm 2012 Dollars)	\$1,316	Post Roy	alty & Ta	xes																										
Case Description	SC04	PS for 1	00k bopd	and gas p 0 hond	processin Droduc	ig sales. S ition Sta	C05 but 0. tion and	.55 MME	OE per w	ell instead le nor cit	of 1.0 M	MBOE p	er well. C	Costs the	same. Caj od 260	pped Ann 0.1/m2.c	ual CAPI	EX of NZS	S1 Billion	per annu op od	n. Reduc	e well cou	int to con	itrol.						
	Current	Centra	1100,00	o noha	FIUUUL	uon sta		3 01 4 .	1 12 MCI	is per su	e per ye		000 m		cu. 20	0 KIII 2 0	n hionn	cilig are	ca ucvei	ohco:										
	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038	2039	2040	2041
Inputs																														
Ann. New Exploration Well Count Ann. New Production Well Count		4	4 2	4	•	45	50	50	50	50	50	50	45	45	40	40	35	30	20											
Ann. New Injection Well Count																														
Capital Exploration G&G	2.0	2.0	2.0	2.0																										
Exploration Seismic	5.6		10.0	1																										
Exploration & Appraisal Wells Development Science		45.0	22.5	45.0																										
Derewyment oceant																														
Development Wells					25.0	506.3	562.5	562.5	562.5	562.5	562.5	562.5	506.3	506.3	450.0	450.0	393.8	337.5	225.0											
Platform/FPSO					23.0	3.0	5.0	5.0	5.0	5.0	5.0	2.0	5.0	5.0	5.0	5.0	5.0	3.0												
Process Plant & Export Lines				133.3	291.5	258.3																								
Onshore Power Generation (50 PJ pa)					12.5	12.5	12.5	12.5	12.5	12.5	12.5	12.5	12.5	12.5	12.5	12.5	12.5	12.5												
Abandonment																														610.00
Abandonment Platform/Installation Other																														
Operating (Fixed)					3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00
OPEX Baseline (incl well re-entries etc)					70.00	105.20	105.20	105.20	105.20	105.20	105.20	105.20	105.20	105.20	105.20	105.20	105.20	105.20	105.20	105.20	105.20	105.20	105.20	105.20	105.20	105.20	105.20	105.20	105.20	105.20
Gas Processing (variable)					1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
LNG Cooling and Liq/Storage (NZ\$ per GJ)																														
Liquids Treat incl. Transport & Port etc (NZ\$ per bbl) Water Treatment (NZ\$ per bbl)		17.00	0 17.00	17.00	17.00	7.80	7.80	7.80	7.80	7.80	7.80	7.80	7.80	7.80	7.80	7.80	7.80	7.80	7.80	7.80	7.80	7.80	7.80	7.80	7.80	7.80	7.80	7.80	7.80	7.80
(
Other - Gas F&F Carbon Cost (NZD/mscf)		1.43	3 1.43	1.43	1.43	1.43	1.43	1.43	1.43	1.43	1.43	1.43	1.43	1.43	1.43	1.43	1.43	1.43	1.43	1.43	1.43	1.43	1.43	1.43	1.43	1.43	1.43	1.43	1.43	1.43
Production Forecasts																0.814415														
Producing Year		1	1 2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29
Gas Kate (mmscr per day) Gas Fuel & Flare (mmscf per day)		1.10	5 0.87	1.52	0.37	10.00	10.00	28.34	10.00	+0.59	49.80	10.00	10.00	10.00	82.50	10.00	10.00	10.00	30.29	29.30	10.00	19.01	10.00	10.00	10.59	8.03	10.00	5.72	4.66	3.79
Cum. Gas incl Fuel (Bscf)		0.2	2 0.4	0.6	0.7	3.9	7.9	18.2	33.0	50.0	68.2	91.5	117.6	146.5	176.6	201.2	221.2	237.4	250.7	261.5	270.3	277.5	283.29	288.04	291.91	295.06	297.62	299.71	301.41	302.80
Cum Sales Gas, i.e. less Fuel (Bscf) Sales Gas, i.e. less Fuel etc. (PL na)		0.0	0.0	0.0	0.0	2.0	4.1	7.5	13.1	19.7	27.0	36.8	48.1	60.7	73.9	84.4	92.5	98.8	103.7	107.2	109.8	111.5	112.6	113.2	113.3	113.0	112.5	112.5	112.5	112.5
LNG Sales Gas (PJ pa)						2.0	2.2	2.1	2.0	0.7		7.0	11.5	14.1	10.0	10.2	0.2		1.0	5.0	2.0	1.0		0.0	0.1		-0.5	0.0	0.0	0.0
LNG Sales Gas Cumulative (PJ)							10		40			102	101	16	104		242	260	274	204	205	202	200		410		224		120	220
Oll Condensate (stb per day)		1055	5 791	1386	335	7911	19778	25761	36765	42359	45276	57912	65097	71908	75000	61081	49745	40513	32995	26871	21885	17823	14515	11822	9628	7841	6386	5201	4236	3449
Cum. Ol/Condensate (mmstb)		0.4	4 0.7	1.2	1.3	4.2	11.4	20.8	34.3	49.7	66.3	87.4	111.2	137.5	164.8	187.2	205.3	220.1	232.2	242.0	250.0	256.5	261.8	266.1	269.6	272.5	274.8	276.7	278.3	279.5
Produced Water (stb per day)		1.05	5 0.79	5.38	16.74	396	989	1288	1838	2118	2264	2896	3255	3595	3750	3054	2487	2026	1650	1344	1094	891	726	591	481	392	319	260	212	172
Cum. Prod. Water (mmstb)		0.0	0.0	0.0	0.0	0.2	0.5	1.0	1.7	2.4	3.3	4	6	7	8	9	10	11	12	12	12	13	13	13	13	14	14	14	14	14
Injected Water (stb per day) Cum. Ini. Water (mmstb)			0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
· · · · ·																														
																In	format	ion Bel	ow this	Line is	Basic	Financ	ial Mo	del Only	y - i.e. (OUTPU	JTS			
Sales Price (NZS)																														
Gas (\$ per GJ)	0.00	0.00	0.00	0.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00
Condensate (S per bbl) Oil (S per bbl)	110.19	107.80	0 102.39	106.30	108.66	111.02	113.38	115.74	118.10	119.94 119.94	121.78	123.62	125.40	127.30	128.74	130.18 130.18	131.62	133.06	134.50 134.50	135.60	136.70	137.80	138.90 138.90	140.00	140.60	141.20	141.80	142.40	143.00 143.00	143.60
Other (LPG etc)																														
Financial Model Assumptions																														
Capital Cost (% pa)	8.00	8.00	8.00	8.00	8.00	8.00	8.00	8.00	8.00	8.00	8.00	8.00	8.00	8.00	8.00	8.00	8.00	8.00	8.00	8.00	8.00	8.00	8.00	8.00	8.00	8.00	8.00	8.00	8.00	8.00
Discount Rate (% pa)	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00
Tax Rate (% pa)	30.00	30.00	30.00	30.00	30.00	30.00	30.00	30.00	30.00	30.00	30.00	30.00	30.00	30.00	30.00	30.00	30.00	30.00	30.00	30.00	30.00	30.00	30.00	30.00	30.00	30.00	30.00	30.00	30.00	30.00
a <i>i i i</i>																														
Outputs Capital (NZS mm) (inflation adi)	7.60	48 37	36.53	197.04	371.25	907 56	693 51	714 31	735 74	757.81	780 55	803.96	747 88	770 32	708 35	729.60	661 22	588.08	383.05	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1437 50
Operating (Fixed NZS mm) (inflation adj.)	0.00	0.00	0.00	0.00	82.16	125.43	129.20	133.07	137.06	141.18	145.41	149.77	154.27	158.90	163.66	168.57	173.63	178.84	184.20	189.73	195.42	201.28	207.32	213.54	219.95	226.55	233.34	240.34	247.55	254.98
Operating (Variable NZS mm)	0.00	7.30	5 5.68	10.28	2.56	34.67	76.51	101.39	147.20	174.02	191.27	250.69	289.64	329.03	353.25	297.30	250.40	211.08	178.13	150.53	127.40	108.04	91.83	78.27	66.93	57.46	49.55	39.75	33.34	27.97
Liquids Trans/Treatment NZ\$ mm (inflation adj.)			7 5	9	2	26	67	90	133	157	173	21	24	301	323	271	227	19	160	134	113	94	79	66	56	47	39	33	28	23
Water Treatment NZ\$ mm (inflation adj.)	0	(0 0	0	0 0	0	0	1	1	1	1	1	2	2	2	2	1	1	1	1	1	1	1	0	0	0	0	0	0	0
Revenues	0.00	42.69	31.33	58.81	14.95	381.20	988.28	1355.89	2037.20	2456.19	2745.68	3674.05	4317.46	4984.36	5414.78	4590.11	3890.21	3296.26	2792.29	2358.85	1992.14	1681.90	1419.42	1197.37	1005.93	844.58	708.56	600.85	506.14	426.36
Gas (NZ\$ mm pa) - inflation adjusted	0.00	0.00	0.00	0.00	0.00	9.31	10.29	16.53	28.26	35.00	39.21	54.49	64.38	74.38	80.38	65.31	52.60	41.87	32.81	25.14	18.63	13.10	8.38	4.35	0.88	-2.11	-4.70	0.00	0.00	0.00
Oil Condensate (NZ\$ mm pa) - inflation adj. Oil (NZ\$ mm pa) - inflation adi.	0.00	42.05	9 31.33	58.81	14.95	3/1.90	977.99	1339.30	2008.94	2421.20	2/06.4/	3619.56	4253.08	4909.99	5334.41	4524.81	3837.61	3254.39	2759.48	2333.72	19/3.51	1008.80	1411.04	1193.02	1005.06	846.69	713.26	600.85	506.14	426.36
DCF Analysis Net Revenue	0.00	35.2	25.64	48 53	-60 77	221.10	782 57	1121 43	1752 03	2141.00	2409.00	3273 50	3873 55	4406 44	4897.87	4124.24	3466 19	2906 34	2420.05	2018 60	1669 32	1372 57	1120.27	905 56	710.05	560.57	425.66	320.76	225.25	143.41
AVR 5%	0.00	1.7	7 1.28	2.43	0.00	11.06	39.13	56.07	87.65	107.05	120.45	163.68	193.68	224.82	244.89	206.21	173.31	145.32	121.50	100.93	83.47	68.63	56.01	45.28	35.95	28.03	21.28	16.04	11.26	7.17
APR 20%	0.00	5.75	5 0.70	1.24	0.00	0.00	52.99	98.43	207.50	271.41	313.71	476.98	589.69	712.20	790.68	638.10	507.80	402.05	318.83	263.53	235.73	205.82	175.97	147.45	120.25	95.62	73.59	56.07	39.39	1.72
Cum. Capital	7.60	53.64	4 74.08	248.89	545.47	1289.39	1596.08	1831.57	2017.84	2170.30	2299.76	2413.79	2437.54	2476.60	2441.96	2438.97	2368.50	2246.03	1955.27	1368.69	958.08	670.66	469.46	328.62	230.04	161.02	112.72	78.90	55.23	1476.17
Capital Depreciation	0.00	2.28	8 16.09	22.22	74.67	163.64	386.82	478.82	549.47	605.35	651.09	689.93	724.14	731.26	742.98	732.59	731.69	710.55	673.81	586.58	410.61	287.42	201.20	140.84	98.59	69.01	48.31	33.82	23.67	16.57
Capital Cost Net Revenue less Cap.Cost	0	28,77	7 3.50	6.22	-188.68	-47.02	131 264.94	150 492.16	1037.52	179 1357.04	189 1568.57	199 2384.88	201 2948.45	204 3561.02	201 3953.41	201 3190.49	196 2538.98	186 2010.25	162 1594.16	114 1317.66	80 1178.63	56 1029.09	39 879.83	737.25	19 601.24	13 478.10	9 367.93	280.35	5 196.96	118 8.61
Cum Net. Revenue less Cap. Cost	0.0	28.8	32.3	38.5	-150.2	-197.2	67.7	559.9	1597.4	2954.4	4523.0	6907.9	9856.3	13417.4	17370.8	20561.3	23100	25110	26705	28022	29201	30230	31110	31847	32448	32926	33294	33575	33772	33780
Net Rev+Depr.+Cap.Cost+Royalty Net Rev+Depr.+Cap.Cost+Royalty+Tax	0.00	23.01	2.80	4.97	-188.68	-47.02	211.95	393.73	830.02 581.0	1085.64	1254.85 878.4	1907.90	2358.76	2848.82	3162.73	2552.39	2031.18	1608.20	1275.33	1054.13	942.91	823.27 576	703.87	589.80	480.99	382.48	294.34 206	224.28	157.57	6.89
NPV Calc (Ex.Royalty)	\$3,398	mm	-		100.7		210.7	272.0			510.1				6617		1 100	1120			000	5.0				000	200			
NPV Calc (Incl.Royalty) NPV Calc (Incl.Royalty and Taxes)	\$1,920 \$1,316	mm mm																												
VIR Calc (Inc.Royalty and Taxes)	\$1.527	PV Futu	re Cashfle	ows																										
	\$2,057	PV Inve	stment																											

Table 23 Scenario 4A (page 1 of 2)

Development Economics Model																					
MRA 10 Oct 2012					CAPEX	Check															
										1038.338	1069.49	1101.57	1134.62	1021.81	1203.72	1247.62	1646.11	1695.49	1576.11	1623.4	1672.1
NPV (NZ\$mm 2012 Dollars)	\$7,625	Gross NF	V Pre Ro	yalty & To	2X																
NPV (NZ\$mm 2012 Dollars)	\$3,023	Post Roya	alty & Ta.	xes																	
Case Description	SC04A	PS for 10)0k bopd	and gas p	orocessin	g sales w	ith 3 differ	ent deve	lopments	SC05A bu	t 0.55 M	MBOE p	er well ins	tead of 1	.0 MMB	OE per w	ell. Costs	kept the	same as	Sc05A.	
	Assumes	3 x 100,	,000 bo	pd Prod	uction	Station	and well	ls drille	d at 12	wells per	site at a	a rate c	apped ii	iitially I	y NZ\$1	l billion	CAPE	K pa ano	d increa	sing slo	wly froi
	Current																				
Tennete	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032
Inputs																					
Ann. New Exploration Well Count		4	2	4		45	50	50	50	60	60	60	60	60	60	60	18	80	80	80	80
Ann. New Injection Well Count						45		50				00			00		80		00		30
Capital																					
Exploration G&G	2	2	2	2																	
Exploration Seismic Exploration & Appraisal Wells	5.0	45.0	22.5	45.0																	
Development Seismic		45.0	22.3	45.0																	
-																					
Development Wells					6.00	506.25	562.5	562.5	562.5	675	675	675	675	675	675	675	900	900	900	900	900
Production Site Equipment & Plowines Platform/FPSO					5.80	5.80	5.80	5.80	5.80	5.80	5.80	5.80	5.80	5.80	5.80	5.80	5.80	5.80	5.80	5.80	5.80
Process Plant & Export Lines					258	225	100	100		100	100	100	100		100	100	100	100			
Intra-field Pipelines					11.25	12.50	12.50	12.50	15.00	15.00	15.00	15.00	15.00	15.00	15.00	20.00	20.00	20.00	20.00	20.00	20.00
Onshore Power Generation (50 PJ pa)																					
Abandonment Platform/Installation																					
Other																					
Operating (Fixed)					3.00	3.00	3.00	3.00	3.00	6.00	6.00	6.00	6.00	6.00	6.00	0.00	0.00	0.00	0.00	0.00	0.00
OPEX Baseline (incl well re-entries etc)					70.00	85.20	85.20	85.20	85.20	170.40	170.40	170.40	170.40	170.40	170.40	255.60	255.60	255.60	255.60	255.60	255.60
Operating (Variable)																					
Gas Processing (per GJ) LNG Cooling and Lig/Storage (NZS per GI)					1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Liquids Treat incl. Transport & Port etc (NZ\$ per bbl)		17.00	17.00	17.00	17.00	7.80	7.80	7.80	7.80	7.80	7.80	7.80	7.80	7.80	7.80	7.80	7.80	7.80	7.80	7.80	7.80
Water Treatment (NZ\$ per bbl)		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
				1.42	1.40			1.42					1.42	1.0							1.42
Other - Gas Fær Carbon Cost (NZD/misci)		1.45	1.43	1.45	1.45	1.45	1.45	1.45	1.45	1.45	1.45	1.45	1.45	1.45	1.45	1.45	1.45	1.45	1.45	1.45	1.45
Production Forecasts																					
Producing Year		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Gas Rate (mmscf per day) Gas Eugl & Elare (mmscf per day)		1.16	0.87	1.52	0.37	8.70	21.76	28.34	40.44	55.30	71.56	92.04	112.05	134.40	154.06	165.00	165.00	165.00	165.00	165.00	165.00
Cum. Gas incl Fuel (Bscf)		0.2	0.87	0.6	0.37	3.9	7.9	18.2	33.0	53.2	79.3	112.9	153.9	203.0	259.2	319.5	379.8	440.0	500.3	560.6	620.8
Cum Sales Gas, i.e less Fuel (Bscf)		0.0	0.0	0.0	0.0	-0.2	1.9	5.3	10.8	19.1	30.3	45.3	64.0	86.7	113.0	141.3	169.6	197.9	226.2	254.5	282.8
Sales Gas, i.e less Fuel etc (PJ pa)		0.0	0.0	0.0	0.0	-0.2	2.2	3.4	5.6	8.3	11.3	15.0	18.7	22.8	26.4	28.4	28.4	28.4	28.4	28.4	28.4
LNG Sales Gas (PJ pa) LNG Sales Gas Cumulative (PJ)																					
BOE Cum		0.4	0.7	1.3	1.4	5	13	24	40	61	90	126	170	223	283	348	413	478	542	607	672
Oil/Condensate (stb per day)		1055	791	1386	335	7911	19778	25761	36765	50270	65054	83673	101862	122178	140054	150000	150000	150000	150000	150000	150000
Cum. Oil/Condensate (mmstb) LPG (t/day)		0.4	0.7	1.2	1.3	4.2	11.4	20.8	34.3	52.0	70.4	106.9	144.1	188.8	239.9	294.7	349.5	404.3	459.1	513.9	0.800
Produced Water (stb per day)		1	1	5	17	396	989	1288	1838	2513	3253	4184	5093	6109	7003	7500	7500	7500	7500	7500	7500
Cum. Prod. Water (mmstb)		0	C	0	0	0	1	1	2	3	4	5	7	9	12	15	17	20	23	26	28
Injected Water (stb per day)																					
Cum. Inj. water (mmstb)		0	U U	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
																-	-				
																In	format	tion Be	low this	Line is	Basic
Sales Price (NZS)																					
Gas (\$ per GJ) Condensate (\$ per bbl)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00
Oil (\$ per bbl)	110.19	107.80	102.39	106.30	108.66	111.02	113.38	115.74	118.10	119.94	121.78	123.62	125.46	127.30	128.74	130.18	131.62	133.00	134.50	135.60	136.70
Other (LPG etc)																					
Einen ein Madel Annunstinne																					
Capital Cost (% pa)	8.00	8.00	8.00	8.00	8.00	8.00	8.00	8.00	8.00	8.00	8.00	8.00	8.00	8.00	8.00	8.00	8.00	8.00	8.00	8.00	8.00
Discount Rate (% pa)	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00
Inflation Rate (% pa)	2.70	2.80	2.90	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00
1 ax Rate (% pa)	30.00	30.00	30.00	30.00	30.00	30.00	30.00	30.00	30.00	30.00	30.00	30.00	30.00	30.00	30.00	30.00	30.00	30.00	30.00	30.00	30.00
Outputs																					
Capital (NZ\$ mm) (inflation adj.)	8	48	37	51	310	869	813	837	739	1038	1069	1102	1135	1022	1204	1248	1646	1695	1576	1623	1672
Operating (Fixed NZ\$ mm) (inflation adj.)	0	0	0	0	82	102	105	108	112	230	237	244	252	259	267	412	425	437	450	464	478
Gas Processing & Carbon NZ\$ mm (inflation adi)	0	1	0	10	3	32	9	101	147	18	2/3	28	451	550	48	52	54	56	57	813 59	61
Liquids Trans./Treatment NZ\$ mm (inflation adj.)		7	5	9	2	26	67	90	133	187	249	330	414	511	604	666	686	706	728	749	772
Water Treatment NZ\$ mm (inflation adj.)	0	0	0	0	0	0	0	1	1	1	2	2	3	3	4	4	4	5	5	5	5
Revenues	0	43	31	59	15	372	978	1339	2037	2917	3949	5313	6762	8476	10121	11289	11754	12237	12739	13226	13732
Gas (NZ\$ mm pa) - inflation adjusted	0	0	0	0	0	0	0	0	28	43	61	83	107	134	160	177	182	188	193	199	205
Oil/Condensate (NZ\$ mm pa) - inflation adj.	0	43	31	59	15	372	978	1339	2009	2873	3889	5230	6655	8342	9961	11112	11572	12049	12545	13027	13527
Ou (NZ\$ mm pa) - inflation adj.																					
DCF Analysis																					
Net Revenue	0	35	26	49	-70	238	796	1129	1778	2481	3439	4709	6060	7662	9199	10154	10585	11033	11499	11949	12417
AVR 5%	0	2	1	2	0	12	40	56	89	124	172	235	303	383	460	508	529	552	575	597	621
Depreciation Scale	0	6	1	4	0	6	65	97	203	328	490	721	973	1280	1582	1758	1824	1875	1940	2016	2097
Cum. Capital	8	54	74	103	382	1136	1608	1963	2113	2518	2832	3084	3293	3327	3533	3721	4250	4671	4846	5015	5183
Capital Depreciation	0	2	16	22	31	115	341	483	589	634	755	850	925	988	998	1060	1116	1275	1401	1454	1505
Capital Cost	0	4	6	8	31	92	131	161	174	207	233	254	271	274	291	306	349	384	399	413	427
Cum Net, Revenue less Cap. Cost	0	29	30	18	-132	-50	324	486	1015	3415	2451	3005 9472	4803	20735	28645	37433	46553	55927	65625	75708	86193
Net Rev+Depr.+Cap.Cost+Royalty	0	23	3	14	-132	25	259	389	812	1312	1961	2884	3891	5120	6328	7030	7296	7499	7759	8066	8388
Net Rev+Depr.+Cap.Cost+Royalty+Tax	0	16	2	10	-132	25	181	272	569	919	1373	2019	2724	3584	4430	4921	5107	5249	5431	5646	5872
NPV Calc (Ex.Royalty)	\$7,625	mm																			
NPV Calc (Incl.Royalty and Taxes)	\$3,023	mm																			
VIR Calc (Inc.Royalty and Taxes)	\$3,532	PV Futur	re Cashfle	ows																	
	1.30	VIR	siment																		

Table 24 Scenario 4A (page 2 of 2)

1722.26	1773.93	1827.15	1881.96	1938.42	1996.57	2056.47	2106.72	1627.92	1124.55								1844.87	1900.22	1989.84
m 2021	Overal	laroun	1 780 1	m2 of n	roducin	a area	develop	ed											
2033	2034	2035	2036	2037	2038	2039	2040	2041	2042	2043	2044	2045	2046	2047	2048	2049	2050	2051	2052
80	80	80	80	80	80	80	80	60	40	30	15								
900	900	900	900	900	900	900	900	675	450	337.5	168.75								
5.80	5.80	5.80	5.80	5.80	5.80	5.80	5.80	5.80	5.80	5.80	5.80								
20.00	20.00	20.00	20.00	20.00	20.00	20.00	15.00	10.00	7.50	3.75									
																	600.00	600.00	610.00
9.00	9.00	9.00	9.00	9.00	9.00	9.00	9.00	9.00	9.00	9.00	9.00	9.00	9.00	9.00	9.00	9.00	9.00	9.00	9.00
235.00	233.00	00.دد2	233.00	233.00	233.00	233.00	233.00	233.00	233.00	233.00	233.00	233.00	233.00	233.00	233.00	233.00	233.00	00.دد2	233.00
1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
7.80	17.00 1.00	17.00 1.00	17.00 1.00	17.00 1.00	17.00 1.00	17.00 1.00	17.00 1.00	17.00 1.00	17.00 1.00	17.00 1.00	17.00 1.00	17.00 1.00	17.00 1.00	17.00 1.00	17.00 1.00	17.00 1.00	17.00 1.00	17.00 1.00	17.00 1.00
1.43	1.43	1.43	1.43	1.43	1.43	1.43	1.43	1.43	1.43	1.43	1.43	1.43	1.43	1.43	1.43	1.43	1.43	1.43	1.43
0.83438	22	22	24	25	26	27	28	20	30	21	22	22	34	25	26	27	20	20	40
137.67	114.87 10.00	95.85 10.00	79.97	66.73 10.00	55.68 10.00	46.45	28 38.76 38.76	32.34	26.99	22.52	18.79 18.79	15.68	13.08	10.91	9.11	7.60	6.34 6.34	5.29	40
671.1	713.06	748.07	777.28	801.65 364.1	821.99 372.4	838.96 372.4	853.12 372.4	864.93 372.4	874.78 372.4	883.01 372.4	889.87 372.4	895.60 372.4	900.37 372.4	904.36 372.4	907.68 372.4	910.46 372.4	912.77 372.4	914.71 372.4	916.32 372.4
23.4	19.2	15.7	12.8	10.4	8.4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
726	771	809 87133	840	867	889	907	922	935	945 24532	954 20469	962	968 14250	973	977 9921	981 8278	984	986	988	990 4012
614.4	652.5	684.3	710.9	733.0	751.5	767.0	779.8	790.6	799.5	807.0	813.2	818.4	822.8	826.4	829.4	832.0	834.1	835.8	837.3
6258 31	5221 33	4357 34	3635 35	3033 37	2531 38	2112 38	1762 39	1470 39	1227 40	1023 40	854 41	713 41	595 41	496 41	414 41	345 42	288 42	240 42	201 42
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Financ	ial Mo	del Onl	y - i.e.	OUTP	UTS														
4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00
137.80 137.80	138.90 138.90	140.00 140.00	140.60 140.60	141.20 141.20	141.80 141.80	142.40 142.40	143.00 143.00	143.60 143.60	144.20 144.20	144.80 144.80	145.40 145.40	146.00 146.00	146.60 146.60	147.20 147.20	147.20 147.20	147.20 147.20	147.20 147.20	147.20 147.20	147.20 147.20
8.00 20.00	8.00 20.00	8.00 20.00	8.00 20.00	8.00 20.00	8.00 20.00	8.00 20.00	8.00 20.00	8.00 20.00	8.00 20.00	8.00 20.00	8.00 20.00	8.00 20.00	8.00 20.00	8.00 20.00	8.00 20.00	8.00 20.00	8.00 20.00	8.00 20.00	8.00 20.00
3.00 30.00	3.00 30.00	3.00 30.00	3.00 30.00	3.00 30.00	3.00 30.00	3.00 30.00	3.00 30.00	3.00 30.00	3.00 30.00	3.00 30.00	3.00 30.00	3.00 30.00	3.00 30.00	3.00 30.00	3.00 30.00	3.00 30.00	3.00 30.00	3.00 30.00	3.00 30.00
1722 492	1774 507	1827 522	1882 538	1938 554	1997 571	2056 588	2107 605	1628 624	1125 642	868 662	449 681	0 702	0 723	0 745	0 767	0 790	1845 814	1900 838	1990 863
53	1293 47 1242	41	957 37 918	824 33 789	29	038 54 582	548 46 501	4/1 40 430	405 34 370	348 29 318	299 25 273	257 22 235	221 19 202	190 16	103	140	121 10 110	104 9	89 8
4	4	3	3	2	2	2	1	1	1	1	1	1	1	1	0	0	0	0	0
11893 174	10299 147	8918 124	7 694 104	663 7 87	5726 72	4879 0	4211 0	3634 0	3136 0	2707 0	2336 0	2016 0	1739 0	1501 0	1290 0	1109 0	953 0	819 0	704 0
11719	10152	8793	7590	6550	5653	4879	4211	3634	3136	2707	2336	2016	1739	1501	1290	1109	953	819	704
10680	8400	7283	6199	5260	4446	3653	3057	2530	2089	1697	1355	1057	796	566	360	178	19	-123	-248
534	425	364	310 802	263 600	222	183	153 118	127	104	85	68 0	53	40	28	18	9	1 0	0	0
1 5350	1 5519	1 5691	1 5865	1 6044	1 6227	1 6416	1 6598	1 6246	1 5497	1 4716	1 3750	1 2625	1 1838	1 1286	1 900	1 630	1 2286	1 3500	1 4440
1555 441	1605 455	1656 469	1707 483	1760 498	1813 513	1868 529	1925 544	1979 516	1874 455	1649 391	1415 312	1125 219	788 154	551 108	386 75	270 53	189 184	686 286	1050 364
8684 94877 6947	0439 101316 5151	5159 106474 4127	4008 110483 3207	3002 113485 2402	2120 115604	1257 116861 1005	589 117450 471	44 117494 35	-240 117253 -240	-343 116910 -343	-371 116539 -371	-288 116251	-146 116106	-92 116013	-101 115912 -101	-144 115768 -144	-355 115413 -355	-1094 114319 -1094	-1662 112656 -1662
4863	3606	2889	2245	1681	1187	704	330	25	-168	-240	-260	-201	-102	-65	-71	-101	-248	-766	-1164

Table 25 Scenario 5 (page 1 of 2)

Development Economics Model																	
MRA 10 Oct 2012					CAPEX	Check											
NPV (NZ\$mm 2012 Dollars)	\$8,205	Gross NP	V Pre Roy	alty & To	ax												
NPV (NZ\$mm 2012 Dollars)	\$3,245	Post Roya	ulty & Tax	es													
Case Description	SC05	PS for 10	0k bopd	and gas p	processin	g sales. C	apped Ar	inual CAI	PEX of N	Z\$1 Billion	per annu	n. Reduce	e well cou	int to con	trol.		e
	Assumes	Central	100,00	о вора	Produc	tion Sta	tion and	1 3 OF 4	x 12 we	ens per su	e per y	ear until	600 W	ens arm	ea. 20	J KM2 0	1 produ
	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028
Inputs																	
Ann. New Exploration Well Count		4	2	4													
Ann. New Production Well Count						45	50	50	50	50	50	50	45	45	40	40	35
This row hycean we could																	
Capital																	
Exploration G&G	2	2	2	2													
Exploration & Appraisal Wells	5.0	45.0	22.5	45.0													
Development Seismic																	
Development Wells						506.25	562.5	562.5	562.5	562.5	562.5	562.5	506.25	506.25	450	450	393 75
Production Site Equipment & Flowlines					25.80	5.80	5.80	5.80	5.80	5.80	5.80	5.80	5.80	5.80	5.80	5.8	5.8
Platform/FPSO Process Plant & Event Lines				122.22	202	258											
Intra-field Pipelines				155.52	12.50	12.50	12.50	12.50	12.50	12.50	12.50	12.50	12.50	12.50	12.50	12.5	12.5
Onshore Power Generation (50 PJ pa)																	
Abandonment Abandonment Platform/Installation																	
Other																	
0 // (T) D																	
G&A					3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00
OPEX Baseline (incl well re-entries etc)					70.00	105.20	105.20	105.20	105.20	105.20	105.20	105.20	105.20	105.20	105.20	105.20	105.20
Operating (Variable)																	
Gas Processing (per GJ)					1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
LNG Cooling and Liq/Storage (NZ\$ per GJ)		17.00	17.00	17.00	17.00	7.90	7.90	7.80	7.80	7.90	7.80	7.80	7.90	7.90	7.90	7.80	7.90
Water Treatment (NZ\$ per bbl)		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Other - Gas Fær Carbon Cost (NZD/msci)		1.45	1.45	1.45	1.45	1.45	1.45	1.45	1.45	1.45	1.45	1.45	1.45	1.45	1.45	1.45	1.45
Production Forecasts																0.768954	1
Producing Year Gas Rate (mmscf per day)		2 32	1 74	3 05	0 74	17.40	43.51	56.67	80.88	93 19	99.61	110 00	110 00	110 00	14	15	16
Gas Fuel & Flare (mmscf per day)		2.32	1.74	3.05	0.74	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00
Cum. Gas incl Fuel (Bscf)		0.4	0.7	1.3	1.4	7.8	15.7	36.4	66.0	100.0	136.4	176.6	216.8	256.9	297.1	337.3	377.5
Sales Gas, i.e less Fuel (BSCI)		0.0	0.0	0.0	0.0	2.0	6.1	8.6	29.0	44.8	16.4	18.3	18.3	115.9	134.2	152.5	170.7
LNG Sales Gas (PJ pa)																	
LNG Sales Gas Cumulative (PJ) BOE Cum		0.8	15	2.6	28	10	25	48	80	116	155	108	242	285	378	371	415
Oil/Condensate (stb per day)		2110	1582	2772	669	15823	39556	51522	73529	84717	90551	100001	100000	100000	100000	100000	100000
Cum. Oil/Condensate (mmstb)		0.8	1.3	2.4	2.6	8.4	22.8	41.7	68.5	99.5	132.5	169.0	205.6	242.1	278.6	315.1	351.7
Produced Water (stb per day)		2	13	139	33	791	1978	2576	3676	4236	4528	5000	5000	5000	5000	5000	5000
Cum. Prod. Water (mmstb)		0	0	0	0	0	1	2	3	5	7	8	10	12	14	16	18
Cum. Inj. Water (mmstb)		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
																In	format
Sales Price (NZ\$)																	
Gas (\$ per GJ) Condensate (\$ per hhl)	0.00	0.00	0.00	0.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00
Oil (\$ per bbl)	110.19	107.80	102.39	106.30	108.66	111.02	113.38	115.74	118.10	119.94	121.78	123.62	125.46	127.30	128.74	130.18	131.62
Other (LPG etc)																	
Financial Model Assumptions																	
Capital Cost (% pa)	8.00	8.00	8.00	8.00	8.00	8.00	8.00	8.00	8.00	8.00	8.00	8.00	8.00	8.00	8.00	8.00	8.00
Discount Rate (% pa) Inflation Rate (% pa)	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00
Tax Rate (% pa)	30.00	30.00	30.00	30.00	30.00	30.00	30.00	30.00	30.00	30.00	30.00	30.00	30.00	30.00	30.00	30.00	30.00
Outputs																	
Capital (NZS mm) (inflation adj.)	8	48	37	197	371	908	694	714	736	758	781	804	748	770	708	730	661
Operating (Fixed NZ\$ mm) (inflation adj.)	0	0 0	0	0	82	125	129	133	137	141	145	150	154	159	164	169	174
Gas Processing & Carbon NZ\$ mm (inflation adi.)		15	11	21	0	01 8	149	17	290	27	3/8	429	442	450	409	483	498
Liquids Trans./Treatment NZ\$ mm (inflation adj.)		13	10	19	5	52	135	181	265	315	347	394	406	418	431	444	457
Water Treatment NZ\$ mm (inflation adj.)	(0 0	0	0	0	0	1	. 1	2	2	2	3	3	3	3	3	3
Revenues	0	85	63	118	30	753	1985	2721	4084	4922	5501	6352	6638	6936	7223	7522	7832
Gas (NZ\$ mm pa) - inflation adjusted	0	0	0	0	0	9	29	42	66	80	88 5412	101	105	108	111	114	118
Oil (NZ\$ mm pa) - inflation adj.			05	110	50	744	1750	2017	4010	4042	5415	0230	0555	0020	/115	/400	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
DCE Analyzis																	
Net Revenue	0	71	51	97	-57	567	1707	2389	3657	4437	4978	5772	6041	6321	6590	6870	7161
AVR 5%	0	4	3	5	0	28	85	119	183	222	249	289	302	316	330	344	358
Depreciation Scale	0	13	6 1	11	0	60 1	238	352	588	/31	827	9/7	1023	10/7	1129	1187	1247
Cum. Capital	8	54	74	249	545	1289	1596	1832	2018	2170	2300	2414	2438	2477	2442	2439	2368
Capital Depreciation	0	2	16	22	75	164	387	479	549	605	651	690	724	731	743	733	732
Net Revenue less Cap.Cost		64	29	55	-176	299	1189	1760	2941	3653	4137	4884	5116	5386	5646	5936	6233
Cum Net. Revenue less Cap. Cost	0	64	93	148	-28	270	1460	3220	6161	9814	13951	18835	23951	29337	34983	40919	47153
Net Rev+Depr.+Cap.Cost+Royalty Net Rev+Depr.+Cap.Cost+Royalty+Tax	0.0	35.9	23	44 30.6	-176.3	239	952	985.5	2353	2923	2316.9	2734.9	4093 2865.1	4309 3016	4517 3162	3324	4987
NPV Calc (Ex.Royalty)	\$8,205	mm															
NPV Calc (Incl.Royalty) NPV Calc (Incl.Royalty and Taxes)	\$4,667 \$3,245	mm															
	1																
VIX Caic (Inc.Koyalty and Taxes)	\$3,791	PV Futur PV Inves	e Cashfio tment	ws													
	1.85	IVIR			1												

Table 26 Scenario 5 (page 2 of 2)

cing or	aa daya	loned														
2029	2030	2031	2032	2033	2034	2035	2036	2037	2038	2039	2040	2041	2042	2043	2044	2045
30	20															
337.5	225															
5.8																
12.5																
																610.00
3.00 105.20	3.00 105.20	3.00 105.20	3.00 105.20	3.00 105.20	3.00 105.20	3.00 105.20	3.00 105.20	3.00 105.20	3.00 105.20	3.00 105.20	3.00 105.20	3.00 105.20	3.00 105.20	3.00 105.20	3.00 105.20	3.00 105.20
1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
7.80	7.80	7.80	7.80	7.80	7.80	7.80	7.80	7.80	7.80	7.80	7.80	7.80	7.80	7.80	7.80	7.80
1.43	1.43	1.43	1.43	1.43	1.43	1.00	1.00	1.43	1.43	1.43	1.43	1.00	1.43	1.00	1.43	1.43
17	10	10	20	21	22	22	24	25	26	27	28	20	20	21	30	22
110.00 10.00	84.58 10.00	65.04 10.00	50.01 10.00	38.46 10.00	29.57 10.00	23 22.74 10.00	17.49 10.00	13.45 10.00	10.34 10.00	7.95	6.11 6.11	4.70 4.70	3.61 3.61	2.78	2.14	1.64 1.64
417.6	448.5	472.3 212.7	490.6	504.6 225.2	515.41 228.7	523.71 231.1	530.10 232.4	535.01 233.1	538.79 233.1	541.69 233.1	543.92 233.1	545.64 233.1	546.96 233.1	547.98 233.1	548.76 233.1	549.36 233.1
18.3	13.7	10.1	7.3	5.2	3.0	2.3	1.4	0.0	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0
458 100000	491 76895	517 59129	536 45467	551 34962	563 26884	572 20673	579 15896	584 12224	588 9399	591 7228	594 5558	596 4274	597 3286	598 2527	599 1943	600 1494
5000	3845	2956	2273	1748	1344	1034	795	611	498.3	361	278	214	164	126	97	75
19	21	22	23	23	24	24	24	25	25	25	25	25	25	25	25	25
ion Rol	low this	Linei	Pasia	Financ					TTC			-				-
				r man			y - 1.e.	4.00	100	4.00	1.00	1.00	1.00	1.00	1.00	4.00
133.06 133.06	134.50 134.50	135.60 135.60	136.70 136.70	137.80 137.80	138.90 138.90	140.00 140.00	140.60 140.60	141.20 141.20	141.80 141.80	142.40 142.40	143.00 143.00	143.60 143.60	144.20 144.20	4.00 144.80 144.80	145.40 145.40	146.00 146.00
8.00 20.00	8.00 20.00	8.00 20.00	8.00 20.00	8.00 20.00	8.00 20.00	8.00 20.00	8.00 20.00	8.00 20.00	8.00 20.00	8.00 20.00	8.00 20.00	8.00 20.00	8.00 20.00	8.00 20.00	8.00 20.00	8.00 20.00
3.00 30.00	3.00 30.00	3.00 30.00	3.00 30.00	3.00 30.00	3.00 30.00	3.00 30.00	3.00 30.00	3.00 30.00	3.00 30.00	3.00 30.00	3.00 30.00	3.00 30.00	3.00 30.00	3.00 30.00	3.00 30.00	3.00 30.00
588	383	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1618
179 513	184 407	190 324	195 258	201 206	207	214 132	220 106	227 86	233	240 55	248 44	255 35	263 27	271 22	279 17	287 14
471	373	27 295 2	23 234 1	185	17 147 1	13 116 1	92 1	73 0	58	9 46 0	36 0	0 29 0	23 0	4 18 0	3 14 0	11 0
8154	6524	5206	4153	3312	2641	2105	1671	1325	1050	835	664	528	420	334	266	211
8033	6431	5135	4100	39	2613	2086	1659	1320	1050	835	664	528	420	334	266	211
7462	5032	4607	3700	2005	2260	1750	1345	1013	749	530	373	230	130	42	-30	-80
373 1313	297 1019	235 798	185 642	145 512	113 406	88 318	67 245	51 186	37 138	27 100	373 19 69	12 12 44	130 7 23	42 2 6	-30	0
1 2246 711	1 1955 674	1 1369 587	1 958 411	1 671 287	1 469 201	1 329 141	1 230 99	1 161 69	1 113 48	1 79 34	1 55 24	1 39 17	1 27 12	1 19 8	1	1 1627 4
186 6566	162 5097	114 3991	80 3209	56 2562	39 2029	27 1591	19 1227	13 931	9 690	7 499	5 345	3 219	2 116	2 32	1 -37	130 -223
53719 5253 3677	58816 4077 2854	62807 3193 2235	66016 2567 1797	68577 2049 1435	70606 1623 1136	72197 1273 891	73424 981 687	74355 744 521	75044 552 386	75543 399 279	75888 276	76107 175 123	76223 93 65	76255 26	76218	75995 -223 -156
									2.50						20	

Table 27 Scenario 5A (page 1 of 2)

Development Economics Model																			
MRA 10 Oct 2012					CAPEX	Check													
										1038.338	1069.49	1101.57	1134.62	1021.81	1203.72	1247.62	1646.11	1695.49	1576.11
NPV (NZ\$mm 2012 Dollars)	\$15,989	Gross N	PV Pre Roy	valty & Te	ax														
NPV (NZ\$mm 2012 Dollars)	\$6,381	Post Roy	alty & Tax	ces															
Case Description	SC05A	PS for 1	00k bopd	and gas p	processin	g sales wi	ith 3 differ	ent deve	lopments										
	Assumes	3 x 100	,000 boj	pd Prod	luction	Station	and well	ls drille	d at 12	wells per	site at a	a rate c	apped i	nitially k	y NZ\$1	l billion	CAPE	C pa and	l increa
	Current																		
Tanata	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030
Ann New Fundantian Well Count																			
Ann. New Exploration Well Count		4	2	4		45	50	50	50	60	60	60	60	60	60	60	80	80	80
Ann. New Injection Well Count																			
Capital																			
Exploration G&G	2	2	2 2	2															
Exploration & Appraisal Wells	5.0	45.0	22.5	45.0															
Development Seismic																			
Development Wells Droduction Site Environment & Flowliner					5.80	506.25	562.5	562.5	562.5	675	675	675	675	675	675	675	900	900	900
Platform/FPSO					5.00	5.80	5.80	5.80	5.80	5.80	5.80	5.80	5.80	5.80	5.60	5.0	5.0	5.0	5.6
Process Plant & Export Lines					258	225	100	100		100	100	100	100		100	100	100	100	
Intra-field Pipelines					11.25	12.50	12.50	12.50	15.00	15.00	15.00	15.00	15.00	15.00	15.00	20.00	20.00	20.00	20.00
Abandonment																			
Abandonment Platform/Installation																			
Other																			
On surfice (First)																			
G&A					3.00	3.00	3.00	3.00	3.00	6.00	6.00	6.00	6.00	6.00	6.00	9.00	9.00	9.00	9.00
OPEX Baseline (incl well re-entries etc)					30.00	45.20	45.20	45.20	45.20	90.40	90.40	90.40	90.40	90.40	90.40	135.60	135.60	135.60	135.60
Gas Processing (per GI)				•	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
LNG Cooling and Liq/Storage (NZ\$ per GJ)					1.00	1.00	1.00	1.00		1.00	1.00	1.00		1.00	1.00		1.00	1.00	1.00
Liquids Treat incl. Transport & Port etc (NZ\$ per bbl)		17.00	17.00	17.00	17.00	7.80	7.80	7.80	7.80	7.80	7.80	7.80	7.80	7.80	7.80	7.80	7.80	7.80	7.80
Water Treatment (NZ\$ per bbl)		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Other - Gas F&F Carbon Cost (NZD/mscf)		1.43	1.43	1.43	1.43	1.43	1.43	1.43	1.43	1.43	1.43	1.43	1.43	1.43	1.43	1.43	1.43	1.43	1.43
· · · · · · · · · · · · · · · · · · ·																			
Production Forecasts																0.823196			
Producing Year Gas Rate (mmscf per day)		2 37	1 74	3 05	0.74	17.40	43.51	56.67	80.88	110.59	143 12	166.68	192 77	218.01	220.00	237.40	247 50	247 50	247 50
Gas Fuel & Flare (mmscf per day)		2.32	1.74	3.05	0.74	10.00	10.00	10.00	10.00	10.00	10.00	100.00	10.00	10.90	11.00	11.87	12.38	12.38	12.38
Cum. Gas incl Fuel (Bscf)		0.4	0.7	1.3	1.4	7.8	15.7	36.4	66.0	106.4	158.6	219.5	289.9	369.6	449.9	536.6	627.0	717.4	807.8
Cum Sales Gas, i.e less Fuel (Bscf)		0.0	0.0	0.0	0.0	1.4	7.5	16.0	28.9	47.3	71.6	100.2	133.6	171.4	209.6	250.8	293.7	336.7	379.6
Sales Gas, i.e less Fuel etc (PJ pa) LNG Sales Gas (PI pa)		0.0	0.0	0.0	0.0	1.4	0.1	8.0	13.0	18.4	24.4	28.7	33.5	38.0	38.3	41.3	43.1	43.1	43.1
LNG Sales Gas Cumulative (PJ)																			
BOE Cum		0.8	1.5	2.6	2.8	10	25	48	80	123	179	245	320	406	493	586	683	780	878
Oil/Condensate (stb per day)		2110	1582	2772	669	15823	39556	51522	73529	100540	130108	208.1	175243	198190	200000	215823	225000	225000	225000
LPG (t/day)		0.0		2.4	2.0	0.4	22.0	41.7	00.5	105.2	152.0	200.1	272.1	544.5	417.5	470.4	576.0	000.7	142.7
Produced Water (stb per day)		2	2 13	139	33	791	1978	2576	3676	5027	6505	7576	8762	9910	10000	10791	11250	11250	11250
Cum. Prod. Water (mmstb)		0	0 0	0	0	0	1	2	3	5	8	10	14	17	21	25	29	33	37
Cum. Inj. Water (mmstb)		0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
																In	format	ion Bei	low this
Salas Palas (2776)																			
Gas (\$ per GJ)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00
Condensate (\$ per bbl)	110.19	107.80	102.39	106.30	108.66	111.02	113.38	115.74	118.10	119.94	121.78	123.62	125.46	127.30	128.74	130.18	131.62	133.06	134.50
Oil (\$ per bbl)	110.19	107.80	102.39	106.30	108.66	111.02	113.38	115.74	118.10	119.94	121.78	123.62	125.46	127.30	128.74	130.18	131.62	133.06	134.50
Other (LPG etc)																			
Financial Model Assumptions																			
Capital Cost (% pa)	8.00	8.00	8.00	8.00	8.00	8.00	8.00	8.00	8.00	8.00	8.00	8.00	8.00	8.00	8.00	8.00	8.00	8.00	8.00
Discount Rate (% pa)	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00
Tax Rate (% pa)	30.00	30.00	30.00	30.00	30.00	30.00	30.00	30.00	30.00	30.00	30.00	30.00	30.00	30.00	30.00	30.00	30.00	30.00	30.00
Outputs																			
Capital (NZS mm) (inflation adj.)	7.60	48	37	51	310	869	813	837	739	1038	1069	1102	1135	1022	1204	1248	1646	1695	1576
Operating (Variable NZ\$ mm)	0.00	15	5 11	21	5	60	149	199	290	407	541	648	772	899	934	1038	1115	1148	1183
Gas Processing & Carbon NZ\$ mm (inflation adj.)	0.00	1	1 1	2	0	8	14	17	23	31	40	47	55	64	67	74	79	82	84
Liquids Trans./Treatment NZ\$ mm (inflation adj.)		13	10	19	5	52	135	181	265	374	498	598	712	829	862	958	1029	1059	1091
water realifent ives nun (initation auj.)											,						,	,	,
Revenues	0.00	85	5 63	118	30	744	1956	2679	4084	5843	7909	9629	11640	13756	14457	16245	17634	18359	19111
Gas (NZ\$ mm pa) - inflation adjusted	0.00	0	0 0	110	0	0	1056	2670	66	96	131	159	191	223	232	258	277	285	293
Oil (NZ\$ mm pa) - inflation adj.	0.00	0.0	03	110	30	/44	1950	2019	4018	5/4/	////0	9470	11445	13533	14225	13700	17558	180/4	10010
DCF Analysis							1.0										1.000		1.500
AVR 5%			1 3	5	-12	628	87	121	3733	266	7238	8848 442	537	636	13377	14982	10287	849	884
APR 20%	0	13	6	13	0	84	255	355	594	894	1250	1549	1907	2291	2418	2723	2964	3062	3176
Depreciation Scale	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Cum. Capital	8	54	74	103	382	1136	1608	1963	2113	2518	2832	3084	3293	3327	3533	3721	4250	4671	4846
Capital Cost	0	4	6	8	31	92	131	483	174	207	233	254	271	274	291	306	349	384	399
Net Revenue less Cap.Cost		64	29	66	-74	421	1277	1777	2970	4470	6250	7744	9535	11453	12088	13616	14822	15312	15882
Cum Net. Revenue less Cap. Cost	0	64	93	160	85	507	1784	3561	6531	11000	17250	24995	34530	45983	58071	71687	86509	101821	117703
Net Rev+Depr.+Cap.Cost+Royany Net Rev+Depr.+Cap.Cost+Royalty+Tax	00	35.9	16.3	37.2	-/4	235.9	715.2	995.3	1663.0	2503.0	3500.0	4336.8	5339.7	6414	9670	7625	8300	8575	8894
NPV Calc (Ex.Royalty)	\$15,989	mm													5.57				
NPV Calc (Incl.Royalty)	\$9,116	mm																	
NEV Calc (Incl.Royalty and Taxes)	\$0,381	Imm																	
VIR Calc (Inc.Royalty and Taxes)	\$7,456	PV Futu	re Cashflo	ws															
	\$2,727	PV Inve	stment																

Table 28 Scenario 5A (page 2 of 2)

1623.4	1672.1	1722.26	1773.93	1827.15	1881.96	1938.42	1996.57	2056.47	2106.72	1627.92	1124.55								1844.87	1900.22	1989.84
sing slo	wly froi	n 2021	Overal	laround	1 780 k	m? of n	roducin	σ area i	develop	ed											
2031	2032	2033	2034	2035	2036	2037	2038	2039	2040	2041	2042	2043	2044	2045	2046	2047	2048	2049	2050	2051	2052
80	80	80	80	80	80	80	80	80	80	60	40	30	15								
900	900	900	900	900	900	900	900	900	900	675	450	337.5	168 75								
5.8	5.8	5.8	5.8	5.8	5.8	5.8	5.8	5.8	5.8	5.8	5.8	5.8	5.8								
20.00	20.00	20.00	20	20	20	20	20	20	15	10	7.5	3.75									
																			600.00	600.00	610.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
135.60	135.60	135.60	135.60	135.60	135.60	135.60	135.60	135.60	135.60	135.60	135.60	135.60	135.60	135.60	135.60	135.60	135.60	135.60	135.60	135.60	135.60
1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
7.80	7.80	7.80	17.00	17.00	17.00	17.00	17.00	17.00	17.00	17.00	17.00	17.00	17.00	17.00	17.00	17.00	17.00	17.00	17.00	17.00	17.00
1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
1.43	1.43	1.43	1.43	1.43	1.43	1.43	1.43	1.43	1.43	1.43	1.43	1.43	1.43	1.43	1.43	1.43	1.43	1.43	1.43	1.43	1.43
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
247.50	247.50	247.50	247.50	247.50	203.74 10.19	167.72	138.07	113.65	93.50 93.56	77.02	63.40 63.40	52.19 52.19	42.96	35.37 35.37	29.11 29.11	23.97 23.97	19.73	16.24	13.37	11.01	9.00
422.6	465.5	508.4	551.4	1259.82 594.3	629.7 35.5	658.5	681.9	681.9	681.9	681.9	681.9	681.9	681.9	681.9	681.9	681.9	681.9	681.9	681.9	681.9	681.9
45.1	45.1	45.1	45.1	45.1	55.5	20.7	23.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
975 225000	1072 225000	1169 225000	1267 225000	1364 225000	1444 185219	1510 152472	1564 125514	1609 103323	1645 85055	1676 70017	1701 57637	1721 47447	1738 39058	1752 32152	1763 26468	1773 21788	1780 17936	1787 14765	1792 12154	1796 10005	1800 8236
825.1	907.3	989.5	1071.6	1153.8	1221.5	1277.2	1323.0	1360.7	1391.8	1417.4	1438.4	1455.8	1470.0	1481.8	1491.4	1499.4	1506.0	1511.3	1515.8	1519.4	1522.4
11250	11250 45	11250 49	11250 54	11250 58	9261 61	7624	6276 66	5166 68	4253 70	3501 71	2882 72	2372 73	1953 73	1608 74	1323 75	1089 75	897 75	738	608 76	500 76	412 76
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
s Line is	Basic	Financ	ial Mo	del Onl	y - i.e. (OUTPU	UTS														
4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00
135.60 135.60	136.70 136.70	137.80 137.80	138.90 138.90	140.00 140.00	140.60 140.60	141.20 141.20	141.80 141.80	142.40 142.40	143.00 143.00	143.60 143.60	144.20 144.20	144.80 144.80	145.40 145.40	146.00 146.00	146.60 146.60	147.20 147.20	147.20 147.20	147.20 147.20	147.20 147.20	147.20 147.20	147.20 147.20
8.00	8.00	8.00	8.00	8.00	8.00	8.00	8.00	8.00	8.00	8.00	8.00	8.00	8.00	8.00	8.00	8.00	8.00	8.00	8.00	8.00	8.00
3.00	20.00 3.00	20.00 3.00	20.00 3.00	20.00 3.00	20.00 3.00	20.00 3.00	3.00	20.00	20.00 3.00	20.00 3.00	20.00 3.00	20.00 3.00	20.00 3.00	20.00	20.00 3.00	20.00	20.00 3.00	20.00 3.00	20.00 3.00	20.00 3.00	20.00
50.00	30.00	30.00	30.00	30.00	30.00	30.00	30.00	30.00	30.00	30.00	30.00	30.00	30.00	30.00	30.00	50.00	30.00	30.00	30.00	30.00	30.00
1623	1672	1722	1774	1827	1882	1938	1997	2056	2107	1628	1125	868 362	449	0	0	0 407	0	0	1845	1900	1990 472
1218	1255	1292 92	2780 95	2863 98	2428 83	2060 71	1748	1561 132	1323 112	1122	951 80	807 68	684 58	580 49	492 41	417 35	354	300 25	254 21	216	183 15
1124	1158 7	1192 8	2677 8	2757 8	2338 7	1982 6	1681 5	1425 4	1208 4	1025 3	869 3	737 2	625 2	530 2	449 1	381 1	323 1	274 1	232 1	197 1	167 0
19843	20601	21388	22202	23047	19624	16706	14222	11937	10164	8654	7368	6274	5341	4548	3872	3296	2795	2370	2009	1704	1445
302 19541	311 20290	321 21067	330 21872	340 22707	288 19335	242 16464	202 14019	0 11937	0 10164	0 8654	0 7368	0 6274	0 5341	0 4548	0 3872	0 3296	0 2795	0 2370	0 2009	0 1704	0 1445
18371	19086 954	19826 991	19146 957	19898 995	16902 845	14344	12162	10055 503	8510	7191 360	6066 303	5105 255	4285	3584 179	2985 149	2472	2022	1638 82	1311	1030	790
3301	3431	3566	3417	3555	2942	2417	1967	1532	1208	939	747	613	512	448	409	363	312	263	187	12	0
5015 1454	5183 1505	5350 1555	5519 1605	5691 1656	5865 1707	6044 1760	6227 1813	6416 1868	6598 1925	6246 1979	5497 1874	4716 1649	3750 1415	2625 1125	1838 788	1286 551	900 386	630 270	2286 189	3500 686	4440 1050
413 16504	427 17154	441 17831	455 17086	469 17774	483 14712	498 12086	513 9836	529 7658	544 6041	516 4696	455 3737	391 3065	312 2559	219 2240	154 2044	108 1814	75 1561	53 1315	184 937	286 59	364 -624
134208 13203	151362 13723	169192 14265	186278 13669	204052 14219	218764 11769	230850 9669	240686 7869	248344 6127	254386 4833	259082 3757	262818 2989	265884 2452	268442 2047	270682 1792	272726 1635	274539 1451	276101 1249	277416 1052	278353 750	278412 47	277788 -624
9242	9606	9985	9568	9953	8239	6768	5508	4289	3383	2630	2093	1717	1433	1254	1145	1016	874	737	525	33	-437

Table 29 Scenario 5B (page 1 of 3)

Development Economics Model																								
MRA 10 Oct 2012																								
NPV (NZ\$mm 2012 Dollars)	\$17,189	Gross NF	V Pre Roy	alty & Ta	ux .																			
NPV (NZSmm 2012 Dollars)	\$6,861	Post Roya	alty & Tax	es																				
Case Description	SC05Ax2	PS for 10)0k bopd :	and gas p	rocessing	g sales wit	h 2 differ	ent devel	opments.	Do this in	2 separat	e develop	ments to	get MAX	ć scale pr	oject. CA	PEX Limit	s as SC05.	A mean pr	ojects are :	spread ove	er a very lo	ıg time fra	me.
	Assumes	2 times	the SC0	5A Sce	nario, i	.e. 2 tim	es 3 x 1	00,000	bopd Pi	roduction	Station	and 36	00 well	s sprea	d over a	pproxin	ately 50	years.	1600 km	2 of prod	lucing ar	rea develo	oped.	
	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035
Inputs																								
Ann. New Exploration Well Count		4	2	4																				
Ann. New Production Well Count	-					45	50	50	50	60	60	60	60	60	60	60	80	80	80	80	80	80	80	80
Ann. New injection weil Count	-																							
Capital																								
Exploration G&G	2	2	2	2																				
Exploration Seismic Exploration & Appraisal Wells	5.0	45.0	22.5	45.0																				
Development Seismic																								
Development Walls						505.25	562.5	562.5	562.5	675	675	675	675	675	675	675	900	900	900	900	900	900	900	900
Production Site Equipment & Flowlines					5.80	5.80	5.80	5.80	5.80	5.80	5.80	5.80	5.80	5.80	5.80	5.8	5.8	5.8	5.8	5.8	5.8	5.8	5.8	5.8
Platform/FPSO																								
Process Plant & Export Lines Intra-field Pipelines					258	12.50	100	12.50	15.00	100	15.00	100	100	15.00	100	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20	20
Onshore Power Generation (50 PJ pa)																								
Abandonment																								
Other																								
Operating (Fixed) G&A					3.00	3.00	3.00	3.00	3.00	6.00	6.00	6.00	6.00	6.00	6.00	9.00	9.00	9.00	9.00	9.00	9.00	9.00	9.00	9.00
OPEX Baseline (incl well re-entries etc)					30.00	45.20	45.20	45.20	45.20	90.40	90.40	90.40	90.40	90.40	90.40	135.60	135.60	135.60	135.60	135.60	135.60	135.60	135.60	135.60
Operating (Variable)																								
LNG Cooling and Liq/Storage (NZ\$ per GJ)					1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Liquids Treat incl. Transport & Port etc (NZ\$ per bbl)		17.00	17.00	17.00	17.00	7.80	7.80	7.80	7.80	7.80	7.80	7.80	7.80	7.80	7.80	7.80	7.80	7.80	7.80	7.80	7.80	7.80	17.00	17.00
Water Treatment (NZ\$ per bbl)		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Production Forecasts		1.40	1.45	C+.1	1.45	1.45	1.42	1.45	1.40	1.40	1.45	C#.1	1.45	1.45	1.40	1.45	1.45	1.45	1.45	1.45	1.45	1.40	1.40	1.40
Producing Year		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
Gas Rate (mmscf per day)	-	2.32	1.74	3.05	0.74	17.40	43.51	56.67	80.88	110.59	143.12	166.68	192.77	218.01	220.00	237.40	247.50	247.50	247.50	247.50	247.50	247.50	247.50	247.50
Cum. Gas incl Fuel (Bscf)		0.4	0.7	1.3	1.4	7.8	10.00	36.4	66.0	10.00	158.6	219.5	289.9	369.6	449.9	536.6	627.0	717.4	807.8	898.2	988.6	12.58	12.38	12.58
Cum Sales Gas, i.e less Fuel (Bscf)		0.0	0.0	0.0	0.0	1.4	7.5	16.0	28.9	47.3	71.6	100.2	133.6	171.4	209.6	250.8	293.7	336.7	379.6	422.6	465.5	508.4	551.4	594.3
Sales Gas, i.e. less Fuel etc. (PJ pa) LNG Sales Gas. (PI na)		0.0	0.0	0.0	0.0	1.4	6.1	8.6	13.0	18.4	24.4	28.7	33.5	38.0	38.3	41.3	43.1	43.1	43.1	43.1	43.1	43.1	43.1	43.1
LNG Sales Gas Cumulative (PJ)																								
BOE Cum		0.8	1.5	2.6	2.8	10	25	48	80	123	120108	245	320	406	493	586	683	780	878	975	1072	1169	1267	1364
Cum. Oil/Condensate (nmstb)		0.8	1.3	2.4	2.6	8.4	22.8	41.7	68.5	100340	152.8	208.1	272.1	344.5	417.5	496.4	578.6	660.7	742.9	825.1	907.3	989.5	1071.6	1153.8
LPG (t/day)							4070	2525		(000						40704								44070
Cum. Prod. Water (sto per day)	-	0	0	139	55	0	19/8	2570	30/0	5027	0000	10	8/62	9910	21	25	29	33	37	41	45	49	54	58
Injected Water (stb per day)																								
Cum. Inj. Water (mmstb)		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Sales Price (NZS)																								
Gas (\$ per GJ)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00
Ondensate (\$ per bbl) Oil (\$ per bbl)	110.19	107.80	102.39	106.30	108.66	111.02	113.38	115.74	118.10	119.94	121.78	123.62	125.46	127.30	128.74	130.18	131.62	133.06	134.50	135.60	136.70	137.80	138.90	140.00
Other (LPG etc)																								
Financial Model Assumptions																								
Capital Cost (% pa)	8.00	8.00	8.00	8.00	8.00	8.00	8.00	8.00	8.00	8.00	8.00	8.00	8.00	8.00	8.00	8.00	8.00	8.00	8.00	8.00	8.00	8.00	8.00	8.00
Discount Rate (% pa)	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00
Tax Rate (% pa)	30.00	30.00	30.00	30.00	30.00	30.00	30.00	30.00	30.00	30.00	30.00	30.00	30.00	30.00	30.00	30.00	30.00	30.00	30.00	30.00	30.00	30.00	30.00	30.00
O-tt																								
Capital (NZS mm) (inflation adj.)	7.60	48.32	36.53	51.36	309.83	868.93	812.91	837.30	738.91	1038.34	1069.49	1101.57	1134.62	1021.81	1203.72	1247.62	1646.11	1695.49	1576.11	1623.40	1852.71	1908.29	1965.54	2024.51
Operating (Fixed NZ\$ mm) (inflation adj.)	0.00	0.00	0.00	0.00	37.14	55.88	57.55	59.28	61.06	125.78	129.55	133.44	137.44	141.57	145.81	225.28	232.04	239.00	246.17	253.56	261.16	269.00	277.07	285.38
Operating (Variable NZS mm) Gas Processing & Carbon NZS mm (inflation adi)	0.00	14.71	0.96	20.60	5.12 0.43	60.21 7.62	148.98 13.56	198.61 16.93	290.12	406.98 30.85	541.13 39.79	648.34 47.0	771.57	898.58 64.1	933.99 66.6	1038.11	1114.72	1148.17 81.9	1182.61 84 3	1218.09	1254.63	1292.27 92.2	2779.74	2863.14 97.8
Liquids Trans./Treatment NZ\$ mm (inflation adj.)		13	10	19	5	52	135	181	265	374	498	598	712	829	862	958	1029	1059	1091	1124	1158	1192	2677	2757
Water Treatment NZ\$ mm (inflation adj.)	0	0	0	0	0	0	1	1	2	2	3	4	5	5	6	6	7	7	7	7	7	8	8	8
Revenues	0.00	85.39	62.65	117.62	29.90	743.80	1955.99	2678.72	4083.69	5843.00	7908.64	9629.35	****	*****	****	*****	17634.17	18358.79	19111.03	19842.87	20601.43	21387.64	22202.49	23046.97
Gas (NZ\$ mm pa) - inflation adjusted	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	65.81	96.20 5746.80	131.13	158.96	190.99	222.92	231.71	257.54	276.55	284.84	293.39	302.19	311.26	320.59	330.21	340.12
Ol (NZ\$ mm pa) - inflation adj.	0.00	0	02.05	117.02	29.90	/45.00	1755.37	2010.12	4017.00	3740.00	1111.32	54/0.35	11449.33	15552.71	14223.03	13707.03	17557.02	10075.55	10017.04	17540.00	20290.17	21007.05	210/2.2/	22100.83
DCF Analysis																								
Net Revenue	0	71	51	97	-12	628	1749	2421	3733	5310	7238	8848	10731	12715	13377	14982	16287	16972	17682	18371	19086	19826	19146	19898
AVR 5%	0	4	3	5	0	31	87	121	187	266	362	442	537	636	669	749	814	849	884	919	954	991	957	995
Depreciation Scale	1	13	0	13	1	84	255	300	594 1	894	1250	1549	1907	2291	2418	2723	2904	5002	3176	3301	3428	5550	5592	3522
Cum. Capital	8	54	74	103	382	1136	1608	1963	2113	2518	2832	3084	3293	3327	3533	3721	4250	4671	4846	5015	5363	5663	5929	6175
Capital Depreciation Capital Cost	0	2	16	22	31	115	341	483	589 174	634 207	755	850 254	925 271	988	998 291	1060	1116 349	1275 384	1401 399	1454 413	1505 441	1609	1699 488	1779
Net Revenue less Cap.Cost		64	29	66	-74	421	1277	1777	2970	4470	6250	7744	9535	11453	12088	13616	14822	15312	15882	16504	17140	17751	16959	17611
Cum Net. Revenue less Cap. Cost Net Rev+Denr +Cap Cost+Rovalty	0	64	93	160	85	507	1784	3561	6531 2376	11000	17250	24995	34530	45983	58071 9670	71687	86509	101821	117703	134208	151347	169098	186057	203668
Net Rev+Depr.+Cap.Cost+Royalty+Tax	0	36	16	37	-52	236	715	995	1663	2503	3500	4337	5340	6414	6769	7625	8300	8575	8894	9242	9598	9941	9497	9862
NPV Cale (Ex.Royalty) NPV Cale (Incl. Revealty)	\$17,189	mm																						
NPV Calc (Incl.Royalty and Taxes)	\$9,801 \$6,861	mm																						
VID Cale (Inc Dovalty and Towns)	68.027	DUDA	Carle																					
vin Cale (inc.royany and faxes)	\$2,806	PV Putur PV Inves	e Cashilo stment	m S																				
	2.86	VIR																						

Table 30 Scenario 5B (page 2 of 3)

2036	2037	2038	2039	2040	2041	2042	2043	2044	2045	2046	2047	2048	2049	2050	2051	2052	2053	2054	2055
80	80	80	80	80	80	80	80	80	80	80	80	80	80	80	80	80	80	80	80
900	900	900	900	900	900	900	900	900	900	900	900	900	900	900	900	900	900	900	900
	5.8	5.8	5.8	5.8	5.8	5.8	5.8	5.8	5.8	5.8	5.8	5.8	5.8	5.8	5.8	5.8	5.8	5.8	5.8
20	100 20	100 20	100 20	100 20	20	100 20	100 20	100 20	100 20	20	20	20	20	20	20	20	20	20	20
9.00	9.00	9.00	9.00	9.00	9.00	9.00	9.00	9.00	9.00	9.00	9.00	9.00	9.00	9.00	9.00	9.00	9.00	9.00	9.00
	135.60	135.60	135.60	135.60	135.60	135.60	135.60	135.60	135.60	135.60	135.60	135.60	135.60	135.60	135.60	135.60	135.60	135.60	135.60
1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
17.00	17.00	17.00	17.00	17.00	17.00	17.00	17.00	17.00	17.00	17.00	17.00	17.00	17.00	17.00	17.00	17.00	17.00	17.00	17.00
	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
1.43	1.43	1.43	1.43	1.43	1.43	1.43	1.43	1.43	1.43	1.43	1.43	1.43	1.43	1.43	1.43	1.43	1.43	1.43	1.43
24 247.50 12.38 1350.22 637.3 43.1	25 247.50 12.38 1440.62 680.2 43.1	26 247.50 12.38 1531.02 723.1 43.1	27 247.50 247.50 1621.42 723.1 0.0	28 247.50 247.50 1711.82 723.1 0.0	29 247.50 247.50 1802.22 723.1 0.0	30 247.50 247.50 1892.62 723.1 0.0	31 247.50 247.50 1983.02 723.1 0.0	32 247.50 247.50 2073.42 723.1 0.0	33 247.50 247.50 2163.82 723.1 0.0	34 247.50 247.50 2254.22 723.1 0.0	35 247.50 247.50 2344.62 723.1 0.0	36 247.50 2435.02 723.1 0.0	37 247.50 247.50 2525.41 723.1 0.0	38 247.50 247.50 2615.81 723.1 0.0	39 247.50 247.50 2706.21 723.1 0.0	40 247.50 247.50 2796.61 723.1 0.0	41 247.50 247.50 2887.01 723.1 0.0	42 247.50 247.50 2977.41 723.1 0.0	43 198.25 198.25 3049.82 723.1 0.0
1461	1558	1656	1753	1850	1947	2045	2142	2239	2336	2434	2531	2628	2725	2823	2920	3017	3114	3211	3289
225000	225000	225000	225000	225000	225000	225000	225000	225000	225000	225000	225000	225000	225000	225000	225000	225000	225000	225000	180228
1236.0	1318.2	1400.4	1482.5	1564.7	1646.9	1729.1	1811.3	1893.5	1975.6	2057.8	2140.0	2222.2	2304.4	2386.5	2468.7	2550.9	2633.1	2715.3	2781.1
11250	11250	11250	11250	11250	11250	11250	11250	11250	11250	11250	11250	11250	11250	11250	11250	11250	11250	11250	9011
	66	70	74	78	82	86	91	95	99	103	107	111	115	119	123	127	132	136	139
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
				Inform	nation Bo	elow this	Line is E	Basic Fina	ancial M	odel Only	- i.e. OU	JTPUTS							
4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00
140.60	141.20	141.80	142.40	143.00	143.60	144.20	144.80	145.40	146.00	146.60	147.20	147.20	147.20	147.20	147.20	147.20	147.20	147.20	147.20
140.60	141.20	141.80	142.40	143.00	143.60	144.20	144.80	145.40	146.00	146.60	147.20	147.20	147.20	147.20	147.20	147.20	147.20	147.20	147.20
8.00	8.00	8.00	8.00	8.00	8.00	8.00	8.00	8.00	8.00	8.00	8.00	8.00	8.00	8.00	8.00	8.00	8.00	8.00	8.00
20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00	20.00
3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00
30.00	30.00	30.00	30.00	30.00	30.00	30.00	30.00	30.00	30.00	30.00	30.00	30.00	30.00	30.00	30.00	30.00	30.00	30.00	30.00
1881.96	2147.80	2212.23	2278.60	2346.96	2181.71	2489.89	2564.58	2641.52	2720.77	2529.20	2605.07	2683.23	2763.72	2846.63	2932.03	3019.99	3110.59	3203.91	3300.03
293.94	302.76	311.84	321.20	330.83	340.76	350.98	361.51	372.36	383.53	395.03	406.88	419.09	431.66	444.61	457.95	471.69	485.84	500.42	515.43
2949.03	3037.50	3128.62	3399.11	3501.09	3606.12	3714.30	3825.73	3940.50	4058.72	4180.48	4305.90	4435.07	4568.12	4705.17	4846.32	4991.71	5141.46	5295.71	4369.20
100.7	103.7	106.8	286.7	295.3	304.1	313.2	322.6	332.3	342.3	352.6	363.1	374.0	385.3	396.8	408.7	421.0	433.6	446.6	368.5
2840	2925	3013	3103	3196	3292	3391	3493	3598	3706	3817	3931	4049	4171	4296	4425	4557	4694	4835	3989
8	9	9	9	9	10	10	10	11	11	11	12	12	12	13	13	13	14	14	12
23838.62	24657.02	25503.07	25994.88	26887.54	27810.37	28764.36	29750.57	30770.06	31823.94	32913.3 7	34039.52	35060.70	36112.53	37195.90	38311.78	39461.13	40644.97	41864.32	34539.94
350.32	360.83	371.66	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
23488.29	24296.18	25131.41	25994.88	26887.54	27810.37	28764.36	29750.57	30770.06	31823.94	32913.37	34039.52	35060.70	36112.53	37195.90	38311.78	39461.13	40644.97	41864.32	34539.94
20596	21317	22063	22275	23056	23863	24699	25563	26457	27382	28338	29327	30207	31113	32046	33008	33998	35018	36068	29655
1030	1066	1103	1114	1153	1193	1235	1278	1323	1369	1417	1466	1510	1556	1602	1650	1700	1751	1803	1483
3646	3784	3912	3934	4071	4218	4380	4529	4685	4849	5023	5220	5389	5559	5732	5908	6089	6273	6463	5159
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
6205	6491	6756	7008	7252	7258	7571	7864	8146	8423	8425	8503	8635	8808	9013	9241	9489	9753	10031	10322
1853	1861	1947	2027	2102	2176	2178	2271	2359	2444	2527	2528	2551	2591	2643	2704	2772	2847	2926	3009
512	535	557	577	598	599	624	648	671	694	695	701	712	726	743	762	782	804	827	851
18231	18921	19559	19670	20356	21089	21898	22644	23427	24244	25116	26098	26944	27796	28661	29542	30444	31367	32316	25796
221899	240820	260379	280049	300405	321494	343392	366036	389463	413707	438823	464921	491865	519661	548322	577864	608307	639675	671991	697786
14585	15137	15647	15736	16285	16871	17518	18115	18741	19395	20093	20878	21555	22237	22929	23634	24355	25094	25853	20636
10210	10596	10953	11015	11399	11810	12263	12681	13119	13577	14065	14615	15089	15566	16050	16544	17048	17566	18097	14446

Table 31 Scenario 5B (page 3 of 3)

-	2056	2057	2058	2059	2060	2061	2062	2063	2064	2065	2066	2067	2068	2069	2070	2071	2072	2073	2074	2075	2076	Totals
0	80	80	80	80	80	80	80	80	60	45												3600
																						6.00 10.00
																						112.50
8	900 5.8	900 5.8	900 5.8	900 5.8	900	900 5.8	900 5.8	900 5.8	675 5.8	506												40500.00 284.20 0.00
0	20	20	20	20	20	20	20	15	11.25										1200	1200	1210	900.00 0.00 3610.00
																						0.00 48105.93
0	9.00 135.60	9.00 135.60	9.00 135.60	9.00 135.60	9.00 135.60	9.00 135.60	9.00 135.60	9.00 135.60	9.00 135.60	9.00 135.60	9.00 135.60	9.00 135.60	9.00 135.60	9.00 135.60	9.00 135.60	9.00 135.60	9.00 135.60	9.00 135.60	9.00 135.60	9.00 135.60	9.00 135.60	501.00 7533.20
0	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
0	17.00 1.00	17.00 1.00	17.00 1.00	17.00 1.00	17.00 1.00	17.00 1.00	17.00 1.00	17.00 1.00	17.00 1.00	17.00 1.00	17.00 1.00	17.00 1.00	17.00 1.00	17.00 1.00	17.00 1.00	17.00 1.00	17.00 1.00	17.00 1.00	17.00 1.00	17.00 1.00	17.00	
3 2	1.43	1.43	1.43	1.43	1.43	1.43	1.43	1.43	1.43	1.43	1.43	1.43	1.43	1.43	1.43	1.43	1.43	1.43	1.43	1.43	1.43	
3 5 5	44 158.80 158.80	45 127.20 127.20 2154.20	46 101.89 101.89 2101.50	47 81.62 81.62	48 65.38 65.38	49 52.37 52.37	50 41.95 41.95	51 33.60 33.60 2201.01	52 26.91 26.91	53 21.56 21.56	54 17.27 17.27 2215 92	55 13.83 13.83	56 11.08 11.08	57 8.88 8.88	58 7.11 7.11	59 5.69 5.69	60 4.56 4.56	61 3.65 3.65	62 2.93 2.93	63 2.34 2.34	64 1.88 1.88	2228.55
1	723.1	723.1	723.1	723.1	723.1	723.1	723.1	723.1	723.1	723.1	723.1	723.1	723.1	723.1	723.1	723.1	723.1	723.1	723.1	723.1	723.1	723.13
9 8	3352 144365	3402 115639	3442 92628	3474 74197	3500 59433	3520 47606	3537 38133	3550 30545	3560 24467	3569 19599	3576 15699	3581 12575	3585 10073	3589 8068	3592 6463	3594 5177	3596 4147	3597 3322	3598 2661	3599 2131	3600 1707	
1	2833.8 7218 142	2876.1 5782 144	2909.9 4631 145	2937.0 3710 147	2958.7 2972 148	2976.1 2380 149	2990.0 1907 149	3001.2 1527 150	3010.1 1223 150	3017.3 980	3023.0 785	3027.6 629	3031.3 504 152	3034.2 403	3036.6 323	3038.5 259	3040.0 207 152	3041.2 166	3042.2 133 152	3043.0 107 152	3043.6 85	3044
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0 0 0	4.00 147.20 147.20	4.00 147.20 147.20	4.00 147.20 147.20	4.00 147.20 147.20	4.00 147.20 147.20	4.00 147.20 147.20	4.00 147.20 147.20	4.00 147.20 147.20	4.00 147.20 147.20	4.00 147.20 147.20	4.00 147.20 147.20	4.00 147.20 147.20	4.00 147.20 147.20	4.00 147.20 147.20	4.00 147.20 147.20	4.00 147.20 147.20	0.00 147.20 147.20	0.00 147.20 147.20	0.00 147.20 147.20	4.00 147.20 147.20	4.00 147.20 147.20	
0	8.00	8.00	8.00	8.00	8.00	8.00	8.00	8.00	8.00	8.00	8.00	8.00	8.00	8.00	8.00	8.00	8.00	8.00	8.00	8.00	8.00	
0	3.00 30.00	3.00 30.00	3.00 30.00	3.00 30.00	3.00 30.00	3.00 30.00	3.00 30.00	3.00 30.00	3.00 30.00	3.00 30.00	3.00 30.00	3.00 30.00	3.00 30.00	3.00 30.00	3.00 30.00	3.00 30.00	3.00 30.00	3.00 30.00	3.00 30.00	3.00 30.00	3.00 30.00	
3	3399.03 530.89	3501.00 546.82	3606.03 563.22	3714.21 580.12	3825.64 597.52	3940.41 615.45	4058.62 633.91	4157.80 652.93	3218.65 672.52	2425.15 692.69	0.00 713.47	0.00 734.88	0.00 756.93	0.00 779.63	0.00 803.02	0.00 827.11	0.00 851.93	0.00 877.48	7500.48 903.81	7725.50 930.92	8023.57 144.60	137322 25681
0 5 9	3604.78 304.0 3291	2974.11 250.8 2715	2453.77 206.9 2240	2024.47 170.7 1848	1670.28 140.9 1525	1378.06 116.2 1258	1136.96 95.9 1038	938.04 79.1 856	773.93 65.3 707	638.52 53.9 583	526.81 44.4 481	434.64 36.7 397	358.60 30.2 327	295.86 25.0 270	244.10 20.6 223	201.39 17.0 184	166.16 14.0 152	137.09 11.6 125	113.10 9.5 103	93.32 8 85	7 6.99 6 70	121068
4 2 0	8497.00 0.00	23511.31 0.00	19397.89 0.00	16004.13 0.00	13204.13 0.00	10894.00 0.00	8988.04 0.00	7415.54	6118.15 0.00	5047.75 0.00	4164.62 0.00	3436.00 0.00	2834.85	2338.88	1929.68 0.00	1592.07	1313.53 0.00	1083.72 0.00	894.12 0.00	737.69 0.00	608.63 0.00	1057293 4897
4	28497.00	23511.31	19397.89	16004.13	13204.13	10894.00	8988.04	7415.54	6118.15	5047.75	4164.62	3436.00	2834.85	2338.88	1929.68	1592.07	1313.53	1083.72	894.12	737.69	608.63	1052396
5 3 9	24361 1218 4078	19990 1000 3180	16381 819 2434	13400 670 1813	10936 547 1295	8900 445 861	7217 361 497	5825 291 190	4672 234 0	3717 186 0	2924 146 0	2266 113 0	1719 86 0	1263 63 0	883 44 0	564 28 0	295 15 0	69 3 0	-123 0 0	-287 0 0	387 19 0	910544 45548 153907
1 2 9	1 10624 3096	1 10938 3187	1 11263 3281	1 11598 3379	1 11944 3479	1 12301 3583	1 12670 3690	1 13027 3801	1 12337 3908	1 11061 3701	1 7743 3318	1 5420 2323	1 3794 1626	1 2656 1138	1 1859 797	1 1301 558	1 911 390	1 638 273	1 7947 191	1 13288 2384	1 17325 3986	44 120050
1 6 6	875 20389 718176	901 15902 734078	928 12171 746249	956 9065 755314	984 6473 761787	1014 4304 766091	1044 2483 768573	1073 950 769524	1019 -255 769268	915 -900 768368	647 -1041 767327	453 -509 766818	317 -224 766594	222 -97 766497	155 -70 766428	109 -103 766325	76 -171 766154	53 -257 765896	637 -951 764945	1082 -3753 761192	1386 -4985 756206	34352 756142
6	11418	8905	6816	5076	3625	2410	1980	532	-235 -179	-630	-729	-357	-224 -157	-68	-70 -49	-103 -72	-1/1 -120	-180	-666	-2627	-3490	421565

9. Glossary

Abandon, Abandonment	To cease work on a well which is non-productive, to plug off the well with
	cement plugs and salvage all recoverable equipment Also used in the context
	of field abandonment.
Annulus	The space between the drillstring and the well wall, or between casing strings,
	or between the casing and the production tubing.
Appraisal Well	A well drilled as part of an appraisal drilling programme which is carried out
	to determine the physical extent, reserves and likely production rate of a field.
Associated Gas	Natural gas associated with oil accumulations, which may be dissolved in the
	oil at reservoir conditions or may form a cap of free gas above the oil.
AVR, APR	See Royalties
Barrel	A unit of volume measurement used for petroleum and its products (7.3
	barrels = 1 ton: 6.29 barrels = 1 cubic metre).
Basin	Area of focussed sediment build-up within tectonically defined boundaries.
	Typically encompass multiple sub-basins.
bbl	One barrel of oil; 1 barrel = 35 Imperial gallons (approx.), or 159 litres
	(approx.); 7.5 barrels = 1 tonne (approx.); 6.29 barrels = 1 cubic metre.
bcf	Billion cubic feet; 1 bcf = 0.83 million tonnes of oil equivalent.
bcm	Billion cubic metres (1 cubic metre = 35.31 cubic feet).
Blow-out preventers (BOPs)	Are high pressure wellhead valves, designed to shut off the uncontrolled flow
	of hydrocarbons.
Blow-out	When well pressure exceeds the ability of the wellhead valves to control it.
	Oil and gas "blow wild" at the surface.
Borehole	The hole as drilled by the drill bit. Also know as a well.
Capex, CAPEX	Capital expenditure
Casing	The steel tubing that lines a well after it has been drilled. It is formed from
_	sections of steel tube screwed together.
Christmas tree	The assembly of fittings and valves on the top of the casing which control the
	production rate of oil. Also known as a wellhead.
Commercial field	An oil and/or gas field judged to be capable of producing enough net income
	to make it worth developing.
Completion	The installation of permanent wellhead equipment for the production of oil
	and gas.
Compressor	An engine used to increase the pressure of natural gas so that it will flow
	more easily through a pipeline
Condensate	Hydrocarbons which are in the gaseous state under reservoir conditions and
	which become liquid when temperature or pressure is reduced. A mixture of
	pentanes and higher hydrocarbons.
Condensate-Gas-Ratio,	Ratio of condensate produced per unit of the produced gas. Typical units are
CGR	standard barrels (stb) of condensate per million standard cubic feet (mmmscf)
	gas or m3 condensate per million m3 (Mm3) gas.
Connate water	Water occurring within the rocks in the oil and gas in the reservoir.
Coring	Taking rock samples from a well by means of a special tool a "core barrel".
Creaming Curve	A statistical technique which recognises that in any exploration province after
	an initial period in which the largest fields are found, success rates and
	average field sizes decline as more exploration wells are drilled and
	knowledge of the area matures.
Cubic foot	A standard unit used to measure quantity of gas (at atmospheric pressure); 1
	cubic foot = 0.0283 cubic metres.
Cuttings	Rock chippings cut from the formation by the drill bit, and brought to the
	surface with the mud. Used by geologists to obtain formation data.
Derrick	The tower-like structure that houses most of the drilling controls.
Development phase	The phase in which a proven oil or gas field is brought into production by
	drilling production (development) wells.
Development well	A well drilled within the proved area of an oil or gas reservoir to the depth of
	a stratigraphic horizon known to be productive; a well drilled in a proven

	field for the purpose of completing the desired spacing pattern of production.
Drilling rig	A drilling unit that is not permanently fixed to the seabed or ground e.g. a
2	drillship a semi-submersible or a jack-up unit. Also means the derrick and its
	associated machinery
Dry Gas	Natural gas composed mainly of methane with only minor amounts of ethane
Dry Gus	propane and butane and little or no heavier hydrocarbons in the gasoline
	range
Dry hole	A well which has proved to contain no productive oil or gas
E&A	Abbreviation for exploration and appraisal
F&P	Abbreviation for exploration and production
Enhanced oil recovery	A process whereby oil is recovered other than by the natural pressure in a
Limaneed on recovery	reservoir
Exploration drilling	Drilling carried out to determine whether hydrocarbons are present in a
8	particular area or structure.
Exploration phase	The phase of operations which covers the search for oil or gas by carrying out
	detailed geological and geophysical surveys followed up where appropriate
	by exploratory drilling.
Exploration well	A well drilled in an unproven area. Also known as a "wildcat well".
Farm in	When a company acquires an interest in a block by taking over all or part of
	the financial commitment for drilling an exploration well.
Field	A geographical area under which an oil or gas reservoir lies.
Fishing	Retrieving objects from the borehole, such as a broken drillstring, or tools.
Formation damage	The reduction in permeability in reservoir rock due to the infiltration of
	drilling or treating fluids into the area adjacent to the wellbore.
Formation pressure	The pressure at the bottom of a well when it is shut in at the wellhead.
Formation water	Water, usually salty, underlying gas and oil in the rock formations.
FPSO	Floating Storage and Offloading facility. Typically a tanker or platform with
	oil/gas separation and treatment and oil storage tanks. Offloading to sales
	typically is via a floating hose or other arrangement which enables a tanker to
	pull in nearby and take the stored oil/condensate.
Fracture Stimulation	See Fracturing.
Fracturing	A method of breaking down a formation by pumping fluid at very high
C	pressures and creating a vertically oriented fracture intersecting the wellbore
	in order to increase the area of formation open to flow or injection. The
	objective is to increase production or injection rates from/to a reservoir.
G	Gas.
G & A	General and Administration. Expenditure category for the overhead costs
	associated with running an exploration/development work programme.
G & G	Geology and Geophysics work and associated expenditure.
G/C	Gas Condensate.
Gas field	A field containing natural gas but no oil.
Gas injection	The process whereby separated associated gas is pumped back into a reservoir
-	for conservation purposes or to maintain the reservoir pressure.
Gas/oil ratio, GOR	Also GOR. The volume of gas at atmospheric pressure produced per unit of
	oil produced.
Gas Rate	Gas flow rate is the volume of gas as measured at standard conditions that is
	produced in a unit of time. Typical units are:
	mmscf/d (millions of standard cubic feet per day)
	Mm3/d (millions of cubic metres per day)
	m3/s (cubic metres per second)
	TJ/d (Tera joules per day) - this is an energy based flow rate.
Gas-to-Liquids (GTL)	The conversion of natural gas to a liquid form so that it can be transported
	easily. Typically, the liquid is converted back to natural gas prior to
	consumption.
Gravity	A standard adopted by the American Petroleum Institute (API) for measuring
	the density of a liquid. Gravity is expressed in degrees with lower numbers
	indicating heavier liquids and higher numbers indicating lighter liquids.
Hydrocarbon	A compound containing only the elements hydrogen and carbon. May exist as

	a solid, a liquid or a gas. The term is mainly used in a catch-all sense for oil,
	gas and condensate.
Injection well	A well used for pumping water or gas into the reservoir.
Jacket	The lower section, or "legs", of an offshore platform.
Kick	A well is said to "kick" if the formation pressure exceeds the pressure exerted
	by the mud column.
Lay barge	A barge that is specially equipped to lay submarine pipelines.
Liquefied natural gas (LNG)	Naturally occurring gas, chiefly methane, liquefied for transportation.
Liquefied petroleum gas	Light hydrocarbon material, gaseous at atmospheric temperature and
(LPG)	pressure, held in the liquid state by pressure to facilitate storage, transport and
	handling. Commercial liquefied gas consists essentially of either propane or
	butane, or mixtures thereof. Also known as NGL.
Lifting costs	The cost of producing oil from a well, lease, property or field.
Log	To conduct a survey inside a borehole to gather information about the
	subsurface formations; the results of such a survey. Logs typically consist of
	several curves on a long grid that describe properties within the wellbore or
	surrounding formations that can be interpreted to provide information about
	the location of oil, gas, and water. Also called well logs, borehole logs,
	wireline logs.
MDT	Modular Dynamics Tester. A wireline logging tool designed to take pressures
	from the wall of the well and to take fluid samples from the rock wall.
	Updated version of the previous tool (RFT).
mmboe .	Million Barrels Oil Equivalent
MEG	Mono Ethylene Glycol. A chemical typically used in minor doses in water
	wet gas streams/pipelines to inhibit or break the formation of gas hydrates.
Metric tonne	Equivalent to 1000 kilos, 2204.61 lbs; 7.5 barrels.
mmcfd	Millions of cubic feet per day (of gas).
Mt	Million tonnes.
Mud	A mixture of base substance and additives used to lubricate the drill bit and to
	counteract the natural pressure of the formation.
Natural gas	Gas, occurring naturally and often found in association with crude petroleum.
NGLs	Natural gas liquids. Liquid hydrocarbons found in association with natural
	gas. Also known as LPG
Non-associated gas	natural gas produced from a reservoir that does not contain significant
	quantities of crude oil.
NPV, Net-Present-Value	The discounted value of future net revenues/expenditures in today's money.
	See VIR.
0	Oil.
O&G	Oil and Gas.
Oil	A mixture of liquid hydrocarbons of different molecular weights.
Oil field	A geographic area under which an oil reservoir lies.
Oil in place (OIP)	An estimated measure of the total amount of oil contained in a reservoir, and,
	as such, a higher figure than the estimated recoverable reserves of oil.
Oil initially in place (OIIP)	As for OIP but the volume of oil contained before any flow of hydrocarbons
	from the reservoir.
Oil Rate	Oil flow rate is the volume of oil as measured at standard conditions that is
	produced in a unit of time. Typical units are:
	stb/d (standard barrels per day)
	m3/d (cubic metres per day)
Operator	The company that has legal authority to drill wells and undertake production
	of hydrocarbons are found. The Operator is often part of a consortium and
	acts on behalf of this consortium.
Opex , OPEX	Operating expenditure.
Payzone	Rock in which oil and gas are found in exploitable quantities.
Permeability	The property of a formation which quantifies the flow of a fluid through the
	pore spaces and into the wellbore.
Petroleum	A generic name for hydrocarbons, including crude oil, natural gas liquids,

	natural gas and their products.
Platform	An offshore structure that is permanently fixed to the seabed.
Porosity	The percentage of void in a porous rock compared to the solid formation
Possible reserves	Those reserves which at present cannot be regarded as 'probable' but are
	estimated to have a significant but less than 50% chance of being technically
	and economically producible
Primary recovery	Recovery of oil or gas from a reservoir purely by using the natural pressure in
T Thinki y Teeo ver y	the reservoir to force the oil or gas out
Probable reserves	Those reserves which are not yet proven but which are estimated to have a
	hetter than 50% chance of being technically and economically producible
Proven field	An oil and/or gas field whose physical extent and estimated reserves have
	heen determined
Proven reserves	Those reserves which on the available evidence are virtually certain to be
	technically and economically producible (i.e. having a better than 90%
	chance of heing produced)
Recoverable reserves	That proportion of the oil and/gas in a reservoir that can be removed using
	currently available techniques
Recovery factor RF	The ratio of recoverable oil and/or gas reserves to the estimated oil and/or gas
	in place in the reservoir
Reserves	Commercially producible hydrocarbons that are known to exist. See Proven
	Probable and Possible Reserves
Reservoir	The underground formation where oil and gas has accumulated It consists of
	a porous rock to hold the oil or gas and a cap rock that prevents its escape
Resources	Hydrocarbon accumulations that may or may not exist in the location or
resources	volumes specified
	Repeat Formation Tester A wireline logging tool designed to take multiple
	pressures from the wall of the well and to take fluid samples from the rock
	wall. Replaced by next generation tool (MDT).
Riser (drilling)	A pipe between a seabed BOP and a floating drilling rig.
Riser (production)	The section of pipework that joins a seabed wellhead to the Christmas tree.
Royalties. Royalty payment	The cash or kind naid to the owner of mineral rights. In New Zealand this
	takes the form of either 20% Accounting Profits Royalty (APR) or 5% Add
	takes the form of either 20% Accounting Profits Royalty (APR) or 5% Add Valorem Royalty (AVR) from 1 January 2010.
Saturation (1)	takes the form of either 20% Accounting Profits Royalty (APR) or 5% Add Valorem Royalty (AVR) from 1 January 2010. The proportion of a rock pore space filled with a particular fluid, e.g. a pore
Saturation (1)	takes the form of either 20% Accounting Profits Royalty (APR) or 5% Add Valorem Royalty (AVR) from 1 January 2010. The proportion of a rock pore space filled with a particular fluid, e.g. a pore with 70% gas and 30% water has a gas saturation of 70%.
Saturation (1) Saturation (2)	 takes the form of either 20% Accounting Profits Royalty (APR) or 5% Add Valorem Royalty (AVR) from 1 January 2010. The proportion of a rock pore space filled with a particular fluid, e.g. a pore with 70% gas and 30% water has a gas saturation of 70%. A hydrocarbon is said to be saturated when it has as much liquid or gas
Saturation (1) Saturation (2)	 takes the form of either 20% Accounting Profits Royalty (APR) or 5% Add Valorem Royalty (AVR) from 1 January 2010. The proportion of a rock pore space filled with a particular fluid, e.g. a pore with 70% gas and 30% water has a gas saturation of 70%. A hydrocarbon is said to be saturated when it has as much liquid or gas dissolved in it as it can at the prevailing temperature and pressure while still
Saturation (1) Saturation (2)	 takes the form of either 20% Accounting Profits Royalty (APR) or 5% Add Valorem Royalty (AVR) from 1 January 2010. The proportion of a rock pore space filled with a particular fluid, e.g. a pore with 70% gas and 30% water has a gas saturation of 70%. A hydrocarbon is said to be saturated when it has as much liquid or gas dissolved in it as it can at the prevailing temperature and pressure while still remaining as a single phase fluid. Example is a saturated oil has gas dissolved
Saturation (1) Saturation (2)	 takes the form of either 20% Accounting Profits Royalty (APR) or 5% Add Valorem Royalty (AVR) from 1 January 2010. The proportion of a rock pore space filled with a particular fluid, e.g. a pore with 70% gas and 30% water has a gas saturation of 70%. A hydrocarbon is said to be saturated when it has as much liquid or gas dissolved in it as it can at the prevailing temperature and pressure while still remaining as a single phase fluid. Example is a saturated oil has gas dissolved in it such that any drop in pressure or temperature will cause gas to bubble out
Saturation (1) Saturation (2)	 takes the form of either 20% Accounting Profits Royalty (APR) or 5% Add Valorem Royalty (AVR) from 1 January 2010. The proportion of a rock pore space filled with a particular fluid, e.g. a pore with 70% gas and 30% water has a gas saturation of 70%. A hydrocarbon is said to be saturated when it has as much liquid or gas dissolved in it as it can at the prevailing temperature and pressure while still remaining as a single phase fluid. Example is a saturated oil has gas dissolved in it such that any drop in pressure or temperature will cause gas to bubble out of the oil. A saturated gas has liquid hydrocarbon (e.g. condensate) dissolved
Saturation (1) Saturation (2)	 takes the form of either 20% Accounting Profits Royalty (APR) or 5% Add Valorem Royalty (AVR) from 1 January 2010. The proportion of a rock pore space filled with a particular fluid, e.g. a pore with 70% gas and 30% water has a gas saturation of 70%. A hydrocarbon is said to be saturated when it has as much liquid or gas dissolved in it as it can at the prevailing temperature and pressure while still remaining as a single phase fluid. Example is a saturated oil has gas dissolved in it such that any drop in pressure or temperature will cause gas to bubble out of the oil. A saturated gas has liquid hydrocarbon (e.g. condensate) dissolved such that a drop in pressure or temperature will cause liquid hydrocarbon to
Saturation (1) Saturation (2)	 takes the form of either 20% Accounting Profits Royalty (APR) or 5% Add Valorem Royalty (AVR) from 1 January 2010. The proportion of a rock pore space filled with a particular fluid, e.g. a pore with 70% gas and 30% water has a gas saturation of 70%. A hydrocarbon is said to be saturated when it has as much liquid or gas dissolved in it as it can at the prevailing temperature and pressure while still remaining as a single phase fluid. Example is a saturated oil has gas dissolved in it such that any drop in pressure or temperature will cause gas to bubble out of the oil. A saturated gas has liquid hydrocarbon (e.g. condensate) dissolved such that a drop in pressure or temperature will cause liquid hydrocarbon to start condensing out of the gas (hence condensate).
Saturation (1) Saturation (2) Secondary recovery	 takes the form of either 20% Accounting Profits Royalty (APR) or 5% Add Valorem Royalty (AVR) from 1 January 2010. The proportion of a rock pore space filled with a particular fluid, e.g. a pore with 70% gas and 30% water has a gas saturation of 70%. A hydrocarbon is said to be saturated when it has as much liquid or gas dissolved in it as it can at the prevailing temperature and pressure while still remaining as a single phase fluid. Example is a saturated oil has gas dissolved in it such that any drop in pressure or temperature will cause gas to bubble out of the oil. A saturated gas has liquid hydrocarbon (e.g. condensate) dissolved such that a drop in pressure or temperature will cause liquid hydrocarbon to start condensing out of the gas (hence condensate). Recovery of oil or gas from a reservoir by artificially maintaining or
Saturation (1) Saturation (2) Secondary recovery	 takes the form of either 20% Accounting Profits Royalty (APR) or 5% Add Valorem Royalty (AVR) from 1 January 2010. The proportion of a rock pore space filled with a particular fluid, e.g. a pore with 70% gas and 30% water has a gas saturation of 70%. A hydrocarbon is said to be saturated when it has as much liquid or gas dissolved in it as it can at the prevailing temperature and pressure while still remaining as a single phase fluid. Example is a saturated oil has gas dissolved in it such that any drop in pressure or temperature will cause gas to bubble out of the oil. A saturated gas has liquid hydrocarbon (e.g. condensate) dissolved such that a drop in pressure or temperature will cause liquid hydrocarbon to start condensing out of the gas (hence condensate). Recovery of oil or gas from a reservoir by artificially maintaining or enhancing the reservoir pressure by injecting gas, water or other substances
Saturation (1) Saturation (2) Secondary recovery	 takes the form of either 20% Accounting Profits Royalty (APR) or 5% Add Valorem Royalty (AVR) from 1 January 2010. The proportion of a rock pore space filled with a particular fluid, e.g. a pore with 70% gas and 30% water has a gas saturation of 70%. A hydrocarbon is said to be saturated when it has as much liquid or gas dissolved in it as it can at the prevailing temperature and pressure while still remaining as a single phase fluid. Example is a saturated oil has gas dissolved in it such that any drop in pressure or temperature will cause gas to bubble out of the oil. A saturated gas has liquid hydrocarbon (e.g. condensate) dissolved such that a drop in pressure or temperature will cause liquid hydrocarbon to start condensing out of the gas (hence condensate). Recovery of oil or gas from a reservoir by artificially maintaining or enhancing the reservoir pressure by injecting gas, water or other substances into the reservoir rock.
Saturation (1) Saturation (2) Secondary recovery Separation –	 The cash of nina plat to the of ninetal rights. In (APR) or 5% Add Valorem Royalty (AVR) from 1 January 2010. The proportion of a rock pore space filled with a particular fluid, e.g. a pore with 70% gas and 30% water has a gas saturation of 70%. A hydrocarbon is said to be saturated when it has as much liquid or gas dissolved in it as it can at the prevailing temperature and pressure while still remaining as a single phase fluid. Example is a saturated oil has gas dissolved in it such that any drop in pressure or temperature will cause gas to bubble out of the oil. A saturated gas has liquid hydrocarbon (e.g. condensate) dissolved such that a drop in pressure or temperature will cause liquid hydrocarbon to start condensing out of the gas (hence condensate). Recovery of oil or gas from a reservoir by artificially maintaining or enhancing the reservoir pressure by injecting gas, water or other substances into the reservoir rock. The process of separating liquid and gas hydrocarbons and water. This is
Saturation (1) Saturation (2) Secondary recovery Separation –	 takes the form of either 20% Accounting Profits Royalty (APR) or 5% Add Valorem Royalty (AVR) from 1 January 2010. The proportion of a rock pore space filled with a particular fluid, e.g. a pore with 70% gas and 30% water has a gas saturation of 70%. A hydrocarbon is said to be saturated when it has as much liquid or gas dissolved in it as it can at the prevailing temperature and pressure while still remaining as a single phase fluid. Example is a saturated oil has gas dissolved in it such that any drop in pressure or temperature will cause gas to bubble out of the oil. A saturated gas has liquid hydrocarbon (e.g. condensate) dissolved such that a drop in pressure or temperature will cause liquid hydrocarbon to start condensing out of the gas (hence condensate). Recovery of oil or gas from a reservoir by artificially maintaining or enhancing the reservoir pressure by injecting gas, water or other substances into the reservoir rock. The process of separating liquid and gas hydrocarbons and water. This is typically accomplished in a pressure vessel at the surface, but newer
Saturation (1) Saturation (2) Secondary recovery Separation –	 The cash of hind pair to the of hinder rights. In (APR) or 5% Add Valorem Royalty (AVR) from 1 January 2010. The proportion of a rock pore space filled with a particular fluid, e.g. a pore with 70% gas and 30% water has a gas saturation of 70%. A hydrocarbon is said to be saturated when it has as much liquid or gas dissolved in it as it can at the prevailing temperature and pressure while still remaining as a single phase fluid. Example is a saturated oil has gas dissolved in it such that any drop in pressure or temperature will cause gas to bubble out of the oil. A saturated gas has liquid hydrocarbon (e.g. condensate) dissolved such that a drop in pressure or temperature will cause liquid hydrocarbon to start condensing out of the gas (hence condensate). Recovery of oil or gas from a reservoir by artificially maintaining or enhancing the reservoir pressure by injecting gas, water or other substances into the reservoir rock. The process of separating liquid and gas hydrocarbons and water. This is typically accomplished in a pressure vessel at the surface, but newer technologies allow separation to occur in the wellbore under certain
Saturation (1) Saturation (2) Secondary recovery Separation –	 The cash of hind pine to the of hinder rights. In Field Tights, in Field Tights, the form of either 20% Accounting Profits Royalty (APR) or 5% Add Valorem Royalty (AVR) from 1 January 2010. The proportion of a rock pore space filled with a particular fluid, e.g. a pore with 70% gas and 30% water has a gas saturation of 70%. A hydrocarbon is said to be saturated when it has as much liquid or gas dissolved in it as it can at the prevailing temperature and pressure while still remaining as a single phase fluid. Example is a saturated oil has gas dissolved in it such that any drop in pressure or temperature will cause gas to bubble out of the oil. A saturated gas has liquid hydrocarbon (e.g. condensate) dissolved such that a drop in pressure or temperature will cause liquid hydrocarbon to start condensing out of the gas (hence condensate). Recovery of oil or gas from a reservoir by artificially maintaining or enhancing the reservoir pressure by injecting gas, water or other substances into the reservoir rock. The process of separating liquid and gas hydrocarbons and water. This is typically accomplished in a pressure vessel at the surface, but newer technologies allow separation to occur in the wellbore under certain conditions.
Saturation (1) Saturation (2) Secondary recovery Separation – Shutdown	 The cash of nind pair to the of the of initial rights. In the behavior is behavior in the behavior is taken to be behavior in the behavior in the behavior in the behavior is the of the behavior is the behavior is the behavior in the behavior is behavior in the behavior is the behavior in the behavior in the behavior in the behavior is the behavior in the behavior in the behavior is the behavior in the behavior in the behavior is the behavior in the behaviore in the behavior in the behavior in the behavior in the
Saturation (1) Saturation (2) Secondary recovery Separation – Shutdown	 The cash of hind plat to the of hinde of hinde rights. In the balance this takes the form of either 20% Accounting Profits Royalty (APR) or 5% Add Valorem Royalty (AVR) from 1 January 2010. The proportion of a rock pore space filled with a particular fluid, e.g. a pore with 70% gas and 30% water has a gas saturation of 70%. A hydrocarbon is said to be saturated when it has as much liquid or gas dissolved in it as it can at the prevailing temperature and pressure while still remaining as a single phase fluid. Example is a saturated oil has gas dissolved in it such that any drop in pressure or temperature will cause gas to bubble out of the oil. A saturated gas has liquid hydrocarbon (e.g. condensate) dissolved such that a drop in pressure or temperature will cause liquid hydrocarbon to start condensing out of the gas (hence condensate). Recovery of oil or gas from a reservoir by artificially maintaining or enhancing the reservoir pressure by injecting gas, water or other substances into the reservoir rock. The process of separating liquid and gas hydrocarbons and water. This is typically accomplished in a pressure vessel at the surface, but newer technologies allow separation to occur in the wellbore under certain conditions. A production hiatus during which the platform ceases to produce while essential maintenance work is undertaken.
Saturation (1) Saturation (2) Secondary recovery Separation – Shutdown Spud-in	 The cash of hind plat to the owner of hinderinghts. In Perkada this takes the form of either 20% Accounting Profits Royalty (APR) or 5% Add Valorem Royalty (AVR) from 1 January 2010. The proportion of a rock pore space filled with a particular fluid, e.g. a pore with 70% gas and 30% water has a gas saturation of 70%. A hydrocarbon is said to be saturated when it has as much liquid or gas dissolved in it as it can at the prevailing temperature and pressure while still remaining as a single phase fluid. Example is a saturated oil has gas dissolved in it such that any drop in pressure or temperature will cause gas to bubble out of the oil. A saturated gas has liquid hydrocarbon (e.g. condensate) dissolved such that a drop in pressure or temperature will cause liquid hydrocarbon to start condensing out of the gas (hence condensate). Recovery of oil or gas from a reservoir by artificially maintaining or enhancing the reservoir pressure by injecting gas, water or other substances into the reservoir rock. The process of separating liquid and gas hydrocarbons and water. This is typically accomplished in a pressure vessel at the surface, but newer technologies allow separation to occur in the wellbore under certain conditions. A production hiatus during which the platform ceases to produce while essential maintenance work is undertaken. The operation of drilling the first part of a new well.
Saturation (1) Saturation (2) Secondary recovery Separation – Shutdown Spud-in Stimulation	 The cash of hind plate to find of hind of hind rights. In the bound of hind plate to hind plate to hind of hind rights in the bound of hind rights in the bound of hind plate to hind of hind rights. The properties of the provide the provide the provide the properties of the plate of the properties of the plate of
Saturation (1) Saturation (2) Secondary recovery Separation – Shutdown Spud-in Stimulation	 The cash of nina place of the orthologinal regimes. In the bound of the properties of the 20% Accounting Profits Royalty (APR) or 5% Add Valorem Royalty (AVR) from 1 January 2010. The proportion of a rock pore space filled with a particular fluid, e.g. a pore with 70% gas and 30% water has a gas saturation of 70%. A hydrocarbon is said to be saturated when it has as much liquid or gas dissolved in it as it can at the prevailing temperature and pressure while still remaining as a single phase fluid. Example is a saturated oil has gas dissolved in it such that any drop in pressure or temperature will cause gas to bubble out of the oil. A saturated gas has liquid hydrocarbon (e.g. condensate) dissolved such that a drop in pressure or temperature will cause liquid hydrocarbon to start condensing out of the gas (hence condensate). Recovery of oil or gas from a reservoir by artificially maintaining or enhancing the reservoir pressure by injecting gas, water or other substances into the reservoir rock. The process of separating liquid and gas hydrocarbons and water. This is typically accomplished in a pressure vessel at the surface, but newer technologies allow separation to occur in the wellbore under certain conditions. A production hiatus during which the platform ceases to produce while essential maintenance work is undertaken. The operation of drilling the first part of a new well. The term used for several processes to enlarge old channels, or create new ones, in the producing formation of a new log and for a well designed to enhance production.
Saturation (1) Saturation (2) Secondary recovery Separation – Shutdown Spud-in Stimulation	 The coan of hind plate to the other of hind profits Royalty (APR) or 5% Add Valorem Royalty (AVR) from 1 January 2010. The proportion of a rock pore space filled with a particular fluid, e.g. a pore with 70% gas and 30% water has a gas saturation of 70%. A hydrocarbon is said to be saturated when it has as much liquid or gas dissolved in it as it can at the prevailing temperature and pressure while still remaining as a single phase fluid. Example is a saturated oil has gas dissolved in it such that any drop in pressure or temperature will cause gas to bubble out of the oil. A saturated gas has liquid hydrocarbon (e.g. condensate) dissolved such that a drop in pressure or temperature will cause liquid hydrocarbon to start condensing out of the gas (hence condensate). Recovery of oil or gas from a reservoir by artificially maintaining or enhancing the reservoir pressure by injecting gas, water or other substances into the reservoir rock. The process of separating liquid and gas hydrocarbons and water. This is typically accomplished in a pressure vessel at the surface, but newer technologies allow separation to occur in the wellbore under certain conditions. A production hiatus during which the platform ceases to produce while essential maintenance work is undertaken. The term used for several processes to enlarge old channels, or create new ones, in the producing formation of a new well. A well that he producing formation of a well designed to enhance production.
Saturation (1) Saturation (2) Secondary recovery Separation – Shutdown Spud-in Stimulation	 The take of the form of either 20% Accounting Profits Royalty (APR) or 5% Add Valorem Royalty (AVR) from 1 January 2010. The proportion of a rock pore space filled with a particular fluid, e.g. a pore with 70% gas and 30% water has a gas saturation of 70%. A hydrocarbon is said to be saturated when it has as much liquid or gas dissolved in it as it can at the prevailing temperature and pressure while still remaining as a single phase fluid. Example is a saturated oil has gas dissolved in it such that any drop in pressure or temperature will cause gas to bubble out of the oil. A saturated gas has liquid hydrocarbon (e.g. condensate) dissolved such that a drop in pressure or temperature will cause liquid hydrocarbon to start condensing out of the gas (hence condensate). Recovery of oil or gas from a reservoir by artificially maintaining or enhancing the reservoir pressure by injecting gas, water or other substances into the reservoir rock. The process of separating liquid and gas hydrocarbons and water. This is typically accomplished in a pressure vessel at the surface, but newer technologies allow separation to occur in the wellbore under certain conditions. A production hiatus during which the platform ceases to produce while essential maintenance work is undertaken. The operation of drilling the first part of a new well. The term used for several processes to enlarge old channels, or create new ones, in the producing formation of a well designed to enhance production. Examples include acidising and fracturing. A well that has been capped off temporarily.
Saturation (1) Saturation (2) Secondary recovery Separation – Shutdown Spud-in Stimulation Suspended well Tcf	 The takes the form of either 20% Accounting Profits Royalty (APR) or 5% Add Valorem Royalty (AVR) from 1 January 2010. The proportion of a rock pore space filled with a particular fluid, e.g. a pore with 70% gas and 30% water has a gas saturation of 70%. A hydrocarbon is said to be saturated when it has as much liquid or gas dissolved in it as it can at the prevailing temperature and pressure while still remaining as a single phase fluid. Example is a saturated oil has gas dissolved in it such that any drop in pressure or temperature will cause gas to bubble out of the oil. A saturated gas has liquid hydrocarbon (e.g. condensate) dissolved such that a drop in pressure or temperature will cause liquid hydrocarbon to start condensing out of the gas (hence condensate). Recovery of oil or gas from a reservoir by artificially maintaining or enhancing the reservoir pressure by injecting gas, water or other substances into the reservoir rock. The process of separating liquid and gas hydrocarbons and water. This is typically accomplished in a pressure vessel at the surface, but newer technologies allow separation to occur in the wellbore under certain conditions. A production hiatus during which the platform ceases to produce while essential maintenance work is undertaken. The operation of drilling the first part of a new well. The term used for several processes to enlarge old channels, or create new ones, in the producing formation of a well designed to enhance production. Examples include acidising and fracturing. A well that has been capped off temporarily. Trillion Cubic Feet (of gas).

Upstream.	The exploration and production portions of the oil and gas industry
VIR, Value Investment	An economic investment assessment criterion. VIR is the Net-Present Value
Ratio	of a project/investment divided by the Net-Present-Value of the Capital
	Invested (to be invested)
Waterflooding	The injection of water into an oil reservoir to "push" additional oil out of the
	reservoir rock and into the wellbores of producing wells.
Well	A hole drilled into the ground to investigate and/or connect with sub-surface
	rocks and their contents. See Borehole.
Well log	A record of geological formation penetrated during drilling, including
	technical details of the operation.
Wet gas	Natural gas containing significant amounts of liquefiable hydrocarbons.
Wildcat well	A well drilled in an unproven area. Also known as a "exploration well".
Workover	Remedial work to the equipment within a well, the well pipe work, or relating
	to attempts to increase the rate of flow.

Glossary/Terms modified and expanded from those provided by the Society of Petroleum Engineering (SPE) and the United Kingdom Offshore Oil and Gas Industry Association (UKOOGIA) on their respective websites.