

Modelling the Impact on Livestock Emissions from New Zealand Emissions Pricing and Global Agricultural Action

> John T. Saunders Meike Guenther Timothy Driver

Client Report prepared for He Pou a Rangi Climate Change Commission

May 2022

Research to improve decisions and outcomes in business, resource and environmental issues.

The Agribusiness and Economics Research Unit (AERU) operates at Lincoln University, providing research expertise for a wide range of international, national and local organisations. AERU research focuses on business, resource and environmental issues.

The Agribusiness and Economics Research Unit (AERU) has four main areas of focus. These areas are: wellbeing economics; trade and the environment; economic development; and non-market valuations.

Research clients include Government agencies, both within New Zealand and from other countries, other international agencies, New Zealand enterprises in the private sector, and community groups.

AERU MISSION

To exercise leadership in research for sustainable well-being.

AERU VISION

The AERU is a cheerful and vibrant workplace where senior and emerging researchers are working together to produce and deliver new knowledge that promotes sustainable well-being.

AERU STRATEGIC AIMS

- To be recognised by our peers and end-users as research leaders for sustainable well-being;
- To mentor emerging researchers and provide advanced education to postgraduate students;
- To maintain strong networks to guide AERU research efforts and to help disseminate its research findings; and
- To contribute to the University's financial targets as agreed in the AERU business model.

DISCLAIMER

While every effort has been made to ensure that the information herein is accurate, the AERU does not accept any liability for error of fact or opinion which may be present, nor for the consequences of any decision based on this information.

© Agribusiness and Economics Research Unit. Lincoln University, New Zealand, 2022.

This work is licenced under the Creative Commons Attribution 3.0 New Zealand licence.

Suggested citation for this report:

Saunders, J.T., Guenther, M. & Driver, T. (2022). Modelling the Impact on Livestock Emissions from New Zealand Emissions Pricing and Global Agricultural Action. Report prepared for He Pou a Rangi Climate Change Commission. Lincoln University: Agribusiness and Economics Research Unit.

Modelling the Impact on Livestock Emissions from New Zealand Emissions Pricing and Global Agricultural Action

John T. Saunders Meike Guenther Timothy Driver

Report prepared for He Pou a Rangi Climate Change Commission

May 2022

Agribusiness and Economics Research Unit P O Box 85084 Lincoln University Lincoln 7647 Christchurch New Zealand

> Ph: (64) (3) 423 0372 www.lincoln.ac.nz/aeru

Contents

LIST OF	IST OF TABLES					
APPEN	APPENDIX TABLES					
LIST OF	IST OF FIGURES					
GLOSS	ARY OF TERMS	VIII				
1 INT	RODUCTION	1				
1.1	Lincoln Trade and Environment Model (LTEM)	1				
2 SCE	NARIOS	3				
3 CRC	DSS SCENARIO COMPARISONS – DOMESTIC	5				
4 CRC	DSS SCENARIO COMPARISONS - INTERNATIONAL	9				
5 SCE	NARIO 2: HIGH ASSISTANCE/COMPETITOR AGRICULTURAL ACTION	13				
6 SCE	NARIO 3: MEDIUM ASSISTANCE/COMPETITOR AGRICULTURAL ACTION	18				
7 SCE	NARIO 4: NO ASSISTANCE/COMPETITOR AGRICULTURAL ACTION	23				
8 SCE	NARIO 5: HIGH ASSISTANCE	28				
9 SCE	NARIO 6: MEDIUM ASSISTANCE	33				
10 SCE	NARIO 7: NO ASSISTANCE	38				
11 COM	NCLUSION	43				
REFERE	REFERENCES					
APPEN	DIX	45				

List of Tables

Table 1: Scenario list	4
Table 2: Progression of the modelled emissions price over time	4
Table 3: Leakage rates for each scenario	12
Table 4: Scenario 2 assumptions	13
Table 5: Scenario 2 -World Production (000 tonnes)	13
Table 6: Scenario 2 -New Zealand Production (000 tonnes)	14
Table 7: Scenario 2 -New Zealand producer returns (million USD)	14
Table 8: Scenario 2 -New Zealand consumer spending (million USD)	15
Table 9: Scenario 3 assumptions	18
Table 10: Scenario 3 - World Production (000 tonnes)	18
Table 11: Scenario 3 -New Zealand Production (000 tonnes)	19
Table 12: Scenario 3 -New Zealand producer returns (million USD)	19
Table 13: Scenario 3 -New Zealand consumer spending (million USD)	20
Table 14: Scenario 4 assumptions	23
Table 15: Scenario 4 - World Production (000 tonnes)	23
Table 16: Scenario 4 -New Zealand Production (000 tonnes)	24
Table 17: Scenario 4 -New Zealand producer returns (million USD)	24
Table 18: Scenario 4 -New Zealand consumer spending (million USD)	25
Table 19: Scenario 5 assumptions	28
Table 20: Scenario 5 - World Production (000 tonnes)	28
Table 21: Scenario 5 -New Zealand Production (000 tonnes)	29
Table 22: Scenario 5 -New Zealand producer returns (million USD)	30
Table 23: Scenario 5 -New Zealand consumer spending (million USD)	30
Table 24: Scenario 6 assumptions	33
Table 25: Scenario 6 -World Production (000 tonnes)	33
Table 26: Scenario 6 -New Zealand Production (000 tonnes)	34
Table 27: Scenario 6 -New Zealand producer returns (million USD)	35
Table 28: Scenario 6 -New Zealand consumer spending (million USD)	35
Table 29: Scenario 7 assumptions	38
Table 30: Scenario 7 - World Production (000 tonnes)	38
Table 31: Scenario 7 - New Zealand Production (000 tonnes)	39
Table 32: Scenario 7 -New Zealand producer returns (million USD)	39

Table 33: Scenario 7 -New Zealand consumer spending (million USD)	40
Appendix tables	
Table A 1: Commodities in the LTEM	45
Table A 2: Countries in the LTEM	45
List of Figures	
Figure 1: Cross-scenario comparison of New Zealand emissions (dairy & red meat)	5
Figure 2: Total change in New Zealand red meat and dairy emissions: 2021-2050	6
Figure 3: Cross Scenario comparison of New Zealand producer price for dairy	7
Figure 4: Cross Scenario comparison of New Zealand producer price for beef	8
Figure 5: Cross Scenario comparison of New Zealand producer price for sheepmeat	8
Figure 6: Global red meat and dairy emissions by scenario	9
Figure 7: Global red meat and dairy emissions change from baseline	10
Figure 8: Total change in global red meat and dairy emissions: 2021-2050	11
Figure 9: Change in emissions, New Zealand and the Rest of the World in 2030	11
Figure 10: Scenario 2 - New Zealand emissions for dairy & red meat	15
Figure 11: Scenario 2 - New Zealand producer price for dairy	16
Figure 12: Scenario 2 - Deferral of global meat production in 2050	16
Figure 13: Scenario 2 - Deferral of global dairy production in 2050	17
Figure 14: Scenario 3 -New Zealand emissions for dairy & red meat	20
Figure 15: Scenario 3 -New Zealand producer price for dairy	21
Figure 16: Scenario 3 -Deferral of global meat production in 2050	21
Figure 17: Scenario 3 -Deferral of global dairy production in 2050	22
Figure 18: Scenario 4 - New Zealand emissions for dairy & red meat	25
Figure 19: Scenario 4 - New Zealand producer price for dairy	26
Figure 20: Scenario 4 -Deferral of global meat production in 2050	26

27

31

31

32

32

36

Figure 21: Scenario 4 -Deferral of global dairy production in 2050

Figure 23: Scenario 5 - New Zealand producer price for dairy

Figure 22: Scenario 5 -New Zealand emissions for dairy & red meat

Figure 24: Scenario 5 -Deferral of global meat production in 2050

Figure 25: Scenario 5 - Deferral of global dairy production in 2050

Figure 26: Scenario 6 -New Zealand emissions for dairy & red meat

Figure 27: Scenario 6 -New Zealand producer price for dairy	36
Figure 28: Scenario 6 -Deferral of global meat production in 2050	37
Figure 29: Scenario 6 -Deferral of global dairy production in 2050	37
Figure 30: Scenario 7 -New Zealand emissions for dairy & red meat	40
Figure 31: Scenario 7 -New Zealand producer price for dairy	41
Figure 32: Scenario 7 - Deferral of global meat production in 2050	41
Figure 33: Scenario 7 - Deferral of global dairy production in 2050	42

Glossary of terms

Countries

- EU-27 European Union (27 members)
- NZ New Zealand
- UK United Kingdom of Great Britain and Northern Island
- US The United States of America

Units

 CO_2e – carbon dioxide equivalent t CO_2e – tonnes carbon dioxide equivalent t – tonnes kilo tonnes - (000 t) million tonnes - (000 000 t) NZD – New Zealand dollars USD – United States dollars

Abbreviations and Acronyms

- CAA competitor agricultural action
- GHG greenhouse gases
- HWEN He Waka Eka Noa
- IMAGE Integrated Model to Assess the Global Environment
- LTEM Lincoln Trade and Environment Model
- PBL PBL Netherland's Environmental Assessment Agency
- RCP Representative Concentration Pathway
- SMP skim milk powder
- SSP Shared Socioeconomic Pathways
- WMP whole milk powder

1 Introduction

This report presents the findings of a set of scenario modelling exercises concerning global emissions change and emissions pricing in livestock production using the Lincoln Trade and Environment Model (LTEM).

The aim of these modelling exercises is to illustrate changes on both global and domestic livestock emissions given the implementation of an emissions price on New Zealand livestock production, and depending on whether New Zealand's major export competitors implemented climate change policy action in their own livestock or agricultural sectors. The definition of export competitors for New Zealand's key agricultural exports, and the potential for climate action in agriculture were informed by a previous AERU report (Guenther, Saunders & Driver, 2022).

Of the identified key export competitor countries (Australia, Belgium, Brazil, China, France, Germany, Ireland, Italy, the Netherlands, the UK, and the US), only Australia, Brazil, France, Germany, Ireland, Italy, the Netherlands, and the UK, were deemed to have actionable emissions goals which would entail a reduction in agricultural production before 2050.

The scenarios studied and the assumptions underpinning them are described in Section 2.

1.1 Lincoln Trade and Environment Model (LTEM)

The model used in this research, the LTEM, is based upon VORSIM framework (Roningen, 1997). LTEM is a multi-country, multi-commodity partial equilibrium (PE) framework which focuses on the agricultural sector i.e. the linkages of the agricultural sector with the rest of the economy are not considered. The LTEM has been used to assess a number of international and national policy and trade decisions (Saunders & Cagatay, 2004; Revell et al., 2013; Saunders & Saunders, 2015; Saunders et al., 2016) highlighting the implications for NZ agro-producers.

LTEM is used to quantify the price, supply, demand and net trade effects of trade and domestic agricultural support policies. The model is used to derive the long-term policy impact in a comparative static fashion. The included products are treated as homogenous and therefore perfectly substitutable in international markets. It is a non-spatial model in which the framework derives the net trade of each region, however, the supply and demand shares of countries in trade can also be traced down. It allows the application of various domestic and border policies explicitly such as production quotas, set-aside policies, input and/or output related producer subsidies/taxes, consumer subsides/taxes, minimum prices, import tariffs and export subsidies. The economic welfare implications of policy changes are also calculated in the LTEM framework by using the producer and consumer surplus measures.

The LTEM framework includes 26 commodities and 22 countries. These are presented in the appendix (Table A 1 & Table A 2). The dairy sector is modelled as five commodities. Raw milk is defined as the farm gate product and then is allocated to either the liquid milk, butter, cheese, whole milk powder or skim milk powder markets depending upon their relative prices subject to physical constraints. The meat sector is disaggregated into sheepmeat, beef, and pig meat in the current version of LTEM. Six crop products (wheat, maize, rice, sugar, coarse grains, oilseeds, oil meals, oil, apples and kiwifruit) as well as the poultry sector (poultry meat and eggs) and wool are also explicitly modelled in LTEM framework.

The general equation structure of each commodity at country level in LTEM framework is represented by six (eight for crops) behavioural equations and one economic identity as in the equations (1) to (9).

The trade price (*pt*) of a commodity (*i*) in a country (*j*) is determined as a function of world market price (*WDpti*) of that commodity and the exchange rate (*exj*), equation 1. The total effect of world market price on trade price of the country is determined by the price transmission elasticity. The domestic producer (*ppij*) and consumer prices (*pcij*) are defined as functions of trade price of the related commodity and commodity specific production and consumption related domestic support/subsidy policies, (*Zsj, Zdj*), which are represents the price wedge, equations 2 and 3.

$$pt_{ij} = f(WDpt_i, ex_j)$$

$$pp_{ij} = g(pt_{ij}, Zs_j)$$
(1)
(2)

$$pc_{ij} = h(pt_{ij}, Zd_j) \tag{3}$$

The domestic supply and demand equations are specified as constant elasticity functions that incorporate both the own and cross-price effects. Domestic supply (*qsij*) is specified as a function of the supply (*ssftij*) shifter, which represents the economic factors that may cause shifts, a policy variable (*Zj*) that may reflect the production quota or set-aside policy, and producer prices of the own and other substitute and complementary commodities (*ppijk*), equation 4.

$$qs_{ij} = l(ssft_{ij}, Z_j, pp_{ikj}) \tag{4}$$

Domestic demand (qd_{ij}) is specified as a function of the demand $(dsft_{ij})$ shifter, consumer prices of the own and other substitute and complementary commodities (pc_{ijk}) and per capita real income $(pinc_j)$ created in the economy, equation 5. The total demand for crops is separated into feed and food demand (and processing industry demand $(qd_{ij,pr})$ in some cases, equation 6). In feed demand $(qd_{ij,fe})$ function domestic supply of livestock $(qs_{ij,liv})$ sector is also included as an explanatory variable, equation 7.

$$qd_{ij,fo} = m(dsft_{ij}, pc_{ikj}, pinc_j)$$
(5)

$$qd_{ij,fe} = m'(dsft_{ij,fe}, pc_{ij}, qs_{ij,liv})$$
(6)

$$qd_{ij,pr} = m''(dsft_{ij,pr}, pc_{ikj})$$
⁽⁷⁾

The stocks (*qstij*) are determined as a function of the stock shifter (*stsftij*), quantity supplied (*qsij*) and consumer price (*pcij*) of the commodity, equation 8. Finally, net trade (*qtij*) of the country (*j*) in commodity (*i*) is determined as the difference between domestic supply and the sum of domestic demand (also includes ($qd_{ij,fe}$) and ($qd_{ij,pr}$) in case of crops) and stock changes in the related year, equation 9. LTEM is a synthetic model since the parameters are adopted from the literature.

$$qst_{ij} = n(stsft_{ij}, qs_{ij}, pc_{ij})$$

$$qt_{ij} = qs_{ij} - qd_{ij} - \Delta qst_{ij}$$
(8)
(9)

The model works by simulating the commodity based world market clearing price on the domestic quantities and prices, which may or may not be under the effect of policy changes. Excess domestic supply or demand in each country spills over onto the world market to determine world prices. The world market clearing price is determined at the level that equilibrates the total demand and supply of each commodity in the world market.

2 Scenarios

Seven scenarios were selected to assess change over three dimensions, action on livestock emissions by some of New Zealand's competitors, the implementation of an emissions price, and the level of assistance offered by the New Zealand government for producers of livestock goods. The intention of this scenario analysis is to assess the relationship between action on agricultural emissions by New Zealand's competitors and domestic agricultural emissions policies.

Table 1 lists the chosen scenarios. The first scenario, the baseline, represents business as usual, no change in domestic or international policy around emissions pricing or reductions. This (and all scenarios) include a background of changes under RCP 4.5/ SPS 2 taken from the PBL's IMAGE model (Stehfest et al., 2014). This scenario is used as a comparator for the subsequent scenarios, helping isolate the changes which have been brought on from the scenarios, rather than those from the general projection of New Zealand's agricultural production and interaction with global markets over time.

Scenarios 1-3 assume New Zealand competitor action on agricultural emissions is taken by New Zealand's competitors in line with the findings of the AERU literature review (2022). Where New Zealand's competitors had stated agricultural emissions reductions targets, these were assumed reached by the stated date. Of those competitor's examined, only Australia, Brazil, the European Union (in particular Belgium, France, Germany, Italy, Ireland, and the Netherlands), and the United Kingdom, were deemed to have quantifiable agricultural goals or targets for emissions reductions which would impact on production for livestock commodities. While it is unknown whether these countries will be able to meet these goals and targets in actuality, by modelling the fullest and least extent by which these countries achieve these goals, we can assess the range of possible outcomes competitor action on emissions will have on global markets. If these countries were to only partial meet some of these outcomes, or only some of these shown in the scenarios which assume competitor action on livestock emissions versus those without competitor action.

It is also important to note the assumed changes in competitor agricultural action were only applied to the livestock sectors of focus to this report (sheepmeat, beef, and dairy).

Conversely, scenarios 4-7 assume no competitor action on agricultural emissions reduction outside of New Zealand, and thus New Zealand's competitors have no modelled policy constraints on their potential for growth in agricultural production.

The difference between scenarios 2-4, and 5-7 is the extent to which the New Zealand government offers assistance. Scenarios 2 and 5 assume 95 per cent of the initial emissions price in 2025 is offset which then decreases by 1 per cent year on year (HWEN, 2022). This implies a remaining burden of 4.25 NZD per tonnes of CO_2e in 2025, rising to 13.8 NZD/tCO₂e in 2030 and then 41.4 NZD/tCO₂e in 2050.

Scenarios 3 and 6 assume a 60 per cent starting level of assistance, which again decreases by 1 per cent year on year. This implies a remaining burden of 34.0 NZD per tonnes of CO_2e in 2025, rising to 62.1 NZD/tCO₂e in 2030 and then 89.7 NZD/tCO₂e in 2050.

Finally, scenarios 4 and 7 assume no government assistance offsetting the emissions price. As of such, producers are assumed to pay the entirety of the emissions price, set at 85 NZD per tonnes of CO_2e in 2025, rising to 138 NZD/tCO₂e in 2030 and continuing until 2050.

Table 1: Scenario list

#	Sconario namo	Global	Pate of assistance	Emissions
		action	Rate of assistance	price
1	Baseline	none	N/A	none
2	High assistance/CAA	high	95% decreasing 1% yearly	As HWEN
3	Med assistance/CAA	high	60% decreasing 1% yearly	As HWEN
4	No assistance/CAA	high	none	As HWEN
5	High assistance	none	95% decreasing 1% yearly	As HWEN
6	Med assistance	none	60% decreasing 1% yearly	As HWEN
7	No assistance	none	none	As HWEN

<u>Notes</u>

Competitor Agricultural Action (CAA):

- High 100% of agricultural climate commitments reached
- None no agricultural climate commitments

Method of assistance:

• level of assistance is proportional discount

Total emissions are a factor of average emissions factors taken from the FAO (FAOSTAT, 2022) where appropriate. Total emissions are an output of the modelling and may differ from national greenhouse gas inventory totals.

Emissions Price

The emissions price used in the modelling exercise was aligned with those presented in the February 2022 He Waka Eka Noa consultation document. In the modelling scenarios with the emissions price (scenarios 2-7), the emissions price is introduced at 85 NZD per tonne of CO_2e in 2025, gradually increases to 138 NZD per tonne of CO_2e in 2030 and remains at this level until 2050, the final year of the modelling (Table 2).

Table 2: Progression of the modelled emissions price over time

Period	Emissions Price (\$/t)
2025	\$85
2030	\$138
2040	\$138
2050	\$138

Individual scenario results are presented as the difference between the Baseline scenario (1) and the presented scenario, year on year. Domestic producer prices are presented as net price with emissions price embodied, i.e. producer price minus the un-assisted price of emissions.

3 Cross Scenario Comparisons – Domestic

As can be seen in Figure 1, the outcome for New Zealand's livestock emissions falls into three major tranches, depending on the level of assistance offered relative to the price of emissions. The reduction from the baseline in 2050 is equivalent to between $1.0-1.2 \text{ MtCO}_2$ e with high assistance, $2.9-3.1 \text{ MtCO}_2$ e with medium assistance and $5.4-5.6 \text{ MtCO}_2$ e with no assistance.

Figure 1: Cross-scenario comparison of New Zealand emissions (dairy & red meat)

The total extent of these changes over the modelled period (2021-2050) is shown in Figure 2, where the total reduction over the 29-year period is 12.3-16.2 MtCO₂e with high assistance, 57.9-62.4 MtCO₂e with medium assistance and 139.1-144.6 MtCO₂e with no assistance.

Figure 2: Total change in New Zealand red meat and dairy emissions: 2021-2050

These results indicate the success of the New Zealand emissions price at reducing livestock emissions under all settings, regardless of whether New Zealand's trading competitors achieve their goals for emissions reductions in the agricultural sector.

Looking at dairy prices for New Zealand (Figure 3), dairy prices in the high assistance/Competitor Agricultural Action scenario (2) are higher than those in the baseline scenario. The reason for this somewhat counter-intuitive result is New Zealand's significance in global dairy markets. The addition of emissions pricing causes an initial constraint to New Zealand dairy production. This constraint, in turn, causes world dairy prices to increase. Ultimately the balance of higher world prices off-sets the low cost of emissions pricing under the high assistance scenario, thus allowing some dairy production in New Zealand to increase (as shown in more detail in the complete results for scenario 2). This implies higher somewhat higher emissions from the dairy sector. Total New Zealand livestock emissions still decrease due to reductions in the production of beef and sheepmeat, although beef also shows some price gains from competitor action (Figure 4), albeit to a lesser extent than for dairy.

Figure 3: Cross Scenario comparison of New Zealand producer price for dairy

Conversely the scenario with only high assistance and no international change (scenario 5), producer prices are below the baseline level. Essentially competitor agricultural action implies higher world prices for dairy as other countries are constrained. Medium assistance with competitor agricultural action (scenario 3) is comparable to the high assistance with no competitor agricultural action scenario (#5) for example.

As expected, all other scenarios have lower prices for dairy, beef, and sheepmeat than seen in the baseline. The most extreme, no assistance scenario (#7), implies a seven per cent decrease in dairy prices by 2050, equivalent to an average annual loss of 12.4 billion USD in producer returns (Table 32).

Producer prices for beef and sheep are more heavily effect under the various scenarios. Under, the no assistance scenario (#7) beef prices decrease by over 50 per cent in 2050, an equivalent of 10.6 billion USD lost annually in producer returns. For Sheepmeat this is a 40 per cent reduction in producer prices, and 13 billion USD less than in the baseline annually (Table 32).

NB: emissions-price embodied

Figure 4: Cross Scenario comparison of New Zealand producer price for beef

The influence of competitor agricultural action on domestic producer prices is less significant in the case of Beef, as shown in Figure 4, and sheepmeat, as shown in Figure 5.

Figure 5: Cross Scenario comparison of New Zealand producer price for sheepmeat

NB: emissions-price embodied

4 Cross Scenario Comparisons - International

This section deals with the consequences for global livestock emissions from New Zealand and its trade competitor's policy decisions; Figure 6 showing the total emissions for red meat and dairy production globally by scenario. The results are split between two major groupings, dependant on whether competitor action for emissions reduction in the livestock sector is achieved by New Zealand's competitors or not. Competitor action accounts for a global decrease of between 90.0-91.6 MtCO₂e in 2050, depending on New Zealand's level of assistance in emissions pricing. The impact of New Zealand's emissions pricing on global emissions is minimal, thus the change between scenarios 2-4 and 1, 5-7 is difficult to discern compared to global changes from competitor agricultural action.

Figure 6: Global red meat and dairy emissions by scenario

In terms of total emissions, no scenarios show increases in global livestock emissions beyond those in the baseline scenario. Even in the most drastic domestic change scenario with no assistance (scenario 7). The more detailed results for scenario 7 show that in term of production deferral, as shown in Figure 32 and Figure 33, no singular country is expected to fulfil the production decreases from New Zealand. Furthermore, the lack of global increases in livestock emissions, indicates that this increased production is not taken up by countries with lesser emissions intensity to any significant degree. This is, of course, dependant on the assumed emissions factors informing the modelling exercise.

If we assume competitor agricultural action, then there is some additional deferral of global production as New Zealand's traditional competing exporters are less able to contribute to replacing lost New Zealand product in global markets. Scenario 4, 'No assistance/Competitor Agricultural Action', implies the highest lost production in New Zealand and its trade competitors. Here, China, India, and the United States are the main countries supplanting lost global livestock production (Figure 20 and Figure 21). In particular, the United States becomes a greater exporter of cheese, skim milk powder, and beef. China increases its production of whole milk powder, sheepmeat, and beef, while India increases butter

production, and to a lesser extent sheepmeat. These changes, however, do not imply greater global livestock emissions.

While total greenhouse gases decrease in all scenarios, it is important to note that all scenarios show a decrease in global production for all examined commodities. Thus, not all lost production is deferred to third-party producers. This will imply higher world prices not reflected in New Zealand's producer prices (due to the embodied cost of the emissions price) and thus costs for global consumers. For example, domestic consumer spending in scenario 4 (No assistance/Competitor Agricultural Action) increases by 1,728 million USD for red meat, and 5,789 million USD for dairy. This is equivalent to 59.6 and 199.6 million USD annually respectively. Furthermore, higher prices may imply additional growth in third party country's production beyond the final year of the model's projections (2050).

Figure 7 and Figure 8 show the changes in global emissions comparative to the baseline scenario. Demonstrating the lower overall emissions in all scenarios. Total global livestock emissions are projected to decrease between 2,095.2-2,143.9 MtCO₂e with competitor action, and between 4.7-52.0 MtCO₂e with only domestic emissions pricing.

Figure 8: Total change in global red meat and dairy emissions: 2021-2050

Figure 9 shows the relative change in emissions between sources for scenarios 5-7. As can be seen, emissions in other countries do increase given the implementation of an emissions price in New Zealand. However, not to the extent that global emissions increase. This is largely due to global production decreasing, as other countries do not completely replace New Zealand's production deficit during the modelled period (2021-2050).

The OCED (2021) provides a simple methodology for assessing emissions leakage rates. The sum of increases in emissions in countries without emissions policies over the sum of decreases in countries with emissions policies. The resulting emissions rate demonstrates whether an external increase in emissions has occurred, with a leakage rate of over 100 per cent implying an increase in total emissions as a result of the changes in a given scenario.

Table 3 shows the leakage rates for the different scenarios compared to the baseline scenario, with scenarios 2-4 comparing the change in emissions in New Zealand and its competitors with change in all other countries; while scenarios 5-6 compare change in New Zealand emissions with the change in all other countries (including its competitors). The results show that no scenario has an increase in global emissions and that leakage rates are increasing, albeit slowly, leading up to 2050.

Interestingly, scenario 5 (High assistance) has the highest leakage rate of the scenarios which do not assume competitor action. This is a result of other countries being slow to replace the production decrease from New Zealand producers. Thus, scenarios which imply a higher decrease in New Zealand production (such as scenarios 6 & 7) will have a greater deficit in global production and thus emissions.

	2021 - 2025	2026 - 2030	2031- 2035	2036- 2040	2041- 2045	2046- 2050	2021- 2050		
Extra-New Zealand & Competitors leakage rates									
2. High assistance/CAA	0%	4%	6%	6%	7%	7%	6%		
3. Medium assistance/CAA	1%	5%	7%	8%	8%	8%	7%		
4. No assistance/CAA	1%	7%	9%	9%	9%	9%	9%		
	Extra	a-New Zeal	and leakag	e rates					
5. High assistance	9%	69%	70%	71%	72%	72%	71%		
6. Medium assistance	9%	67%	71%	71%	70%	70%	69%		
7. No assistance	9%	61%	65%	65%	65%	65%	64%		

Table 3: Leakage rates for each scenario

Emission's leakage in the first period (2021-2025) are lower as they includes the period before emissions prices are introduced (2021-2024).

5 Scenario 2: High Assistance/Competitor Agricultural Action

Table 4: Scenario 2 assumptions

#	Scenario name	Global	Rate of assistance	Emissions
	Scenario name	action	Nate of assistance	price
2	High assistance/CAA	high	95% decreasing 1% yearly	As HWEN

This scenario (Table 4) assumed high assistance for NZ producers with 95 per cent of the emissions price subsidised by the government at its implementation in 2030 and a subsequent drop of assistance by 1 per cent annually. In addition, global climate level is high. It is assumed that Brazil, EU-27, the UK and Australia fully achieve their agricultural climate commitments.

Table 5 shows modelling projections for world production by commodity over the projection period 2021 – 2050. Global meat and dairy production is predicted to decrease significantly for all commodities due to the high global climate action, which has a significant impact on the reduction of livestock production. The largest fall in production by 2050 is projected for global beef production (- 12.0 million tonnes), followed by cheese (- 7.2 million tonnes), then WMP production (-2.8 million tonnes).

Commodity	2021-2025	2026-2030	2031-2035	2036-2040	2041-2045	2046-2050	Total
Beef	492	-954	-2,174	-2,714	-3,158	-3,528	-12,035
Sheepmeat	-12	-44	-77	-122	-166	-210	-631
Butter	-68	-148	-214	-229	-240	-248	-1,147
Cheese	-448	-950	-1,363	-1,443	-1,495	-1,533	-7,233
WMP	-183	-361	-513	-554	-587	-617	-2,814
SMP	-52	-112	-165	-179	-189	-198	-895
Meat	247	-1,193	-2,428	-2,967	-3,422	-3,816	-13,579
Dairy	-752	-1,572	-2,255	-2,404	-2,510	-2,597	-12,089

Table 5: Scenario 2 - World Production (000 tonnes)

For NZ, modelling results show that domestic meat production is expected to drop by 1.4 billion tonnes between 2021 and 2050 (see Table 6). Larger decreases are predicted for beef production than sheepmeat production. Interestingly, under this scenario, NZ dairy production is expected to increase by 371 kilo tonnes by 2050. This is due to the large global reduction in dairy production leading to higher world prices for dairy products, which helps offset the price paid by NZ producers for emissions. It can be seen that the increases in domestic dairy production level off as the NZ emissions price increases leading up to 2030, and as the government assistance tails off. However, production levels are still positive and higher than in the baseline scenario.

Commodity	2021-2025	2026-2030	2031-2035	2036-2040	2041-2045	2046-2050	Total
Beef	-15	-34	-58	-113	-172	-235	-628
Sheepmeat	-4	-50	-96	-161	-229	-300	-840
Butter	6	10	13	8	3	-3	37
Cheese	6	12	17	15	14	12	75
WMP	22	37	48	42	34	26	209
SMP	6	11	14	10	7	3	50
Meat	-19	-82	-151	-268	-392	-523	-1,434
Dairy	40	70	92	76	57	37	371

Table 6: Scenario 2 -New Zealand Production (000 tonnes)

The projected decrease in producer prices and production leads to decreases in New Zealand producer returns for the two meat commodities. As shown in Table 7, NZ producer returns for meat are projected to drop by 7.6 per cent by 2050. Interestingly, producer returns for all dairy commodities are expected to grow by 2050. Producer returns are projected to increase up to 2.3 per cent between 2021 and 2035 but then, with the gradual introduction of the higher price for emissions in 2030, producer returns are dropping slightly, however they are still positive and higher than returns in the baseline scenario which is an interesting result. Overall, between 2021 and 2050 producer returns for dairy are projected to increase by almost 2 per cent with the highest returns projected for cheese (+2.6 per cent), then WMP (+2.2 per cent) by 2050.

Commodity	2021-2025	2026-2030	2031-2035	2036-2040	2041-2045	2046-2050	Total
Beef	-819	-2,141	-3,850	-7,238	-10,903	-14,756	-39,706
Sheepmeat	-394	-3,582	-7,071	-11,964	-17,067	-22,301	-62,379
Butter	647	1,042	1,254	610	-140	-954	2,458
Cheese	1,044	2,114	2,985	2,869	2,647	2,371	14,031
WMP	3,598	6,297	8,461	7,669	6,604	5,408	38,037
SMP	1,042	1,930	2,692	2,300	1,770	1,149	10,883
Meat	-1,201	-5,658	-10,806	-19,027	-27,738	-36,769	-101,199
Dairy	6,331	11,384	15,392	13,447	10,880	7,974	65,408
		%	change from	base scenari	0		
Beef	-1.2%	-2.8%	-4.7%	-8.3%	-11.9%	-15.5%	-7.9%
Sheepmeat	-0.4%	-3.5%	-6.4%	-10.2%	-13.8%	-17.3%	-9.2%
Butter	0.5%	0.8%	0.9%	0.4%	-0.1%	-0.6%	0.3%
Cheese	1.3%	2.5%	3.4%	3.1%	2.8%	2.5%	2.6%
WMP	1.5%	2.4%	3.0%	2.6%	2.1%	1.6%	2.2%
SMP	0.9%	1.4%	1.8%	1.5%	1.0%	0.6%	1.2%
Meat	-0.6%	-2.8%	-4.9%	-8.2%	-11.5%	-14.8%	-7.6%
Dairy	1.1%	1.8%	2.3%	1.9%	1.5%	1.0%	1.6%

Table 7: Scenario 2 -New Zealand producer returns (million USD)

Under this scenario, modelling projections show an increase in New Zealand consumer spending for livestock commodities by 2050 (see Table 8). The increase in consumer spending for dairy commodities is predicted to be significantly higher than those for meat commodities. Spending on dairy commodities is predicted to increase by 5 billion USD by 2050 compared to the baseline, whereas spending on meat commodities is expected to grow by 902 million USD by 2050 compared to the baseline.

Commodity	2021-2025	2026-2030	2031-2035	2036-2040	2041-2045	2046-2050	Total
Beef	-18	41	92	117	137	154	524
Sheepmeat	-6	22	46	60	73	84	280
Butter	36	79	113	119	122	124	593
Cheese	93	208	310	337	356	372	1,676
WMP	4	8	12	13	13	14	64
SMP	141	318	483	540	587	628	2,698
Meat	-23	75	158	199	233	261	902
Dairy	274	613	917	1,008	1,078	1,139	5,030

Table 8: Scenario 2 -New Zealand consumer spending (million USD)

As a result of the predicted fall in meat and dairy production and high global climate action of competitor countries, NZ GHG emissions from the two livestock types are expected to decrease over time as shown in Figure 10. This shows that climate policies assumed under this scenario are successful in reducing livestock emissions. Figure 10 also shows that, in line with the projected dairy production increase, described earlier, emissions are projected to increase up to 2030. Once the price for emissions is implemented emissions are projected to decrease and are especially falling after the introduction of the higher emissions price in 2030, and with the gradual removal of government assistance.

Figure 10: Scenario 2 - New Zealand emissions for dairy & red meat

Figure 11 shows projections of the NZ dairy price between 2021 and 2050. Under this scenario, NZ dairy prices are expected to be higher than prices under the baseline scenario. Although they begin to trend below the baseline levels near the end of the modelling exercise in 2050. These high dairy prices are due to global action, and the lower burden of emissions pricing due to the high assistance, as the assistance decreases and other countries increases production in response to higher global prices, NZ producer prices begin to decline.

Figure 12 shows modelling results with regards to the deferral of global meat production in 2050 for two meat commodities. Overall, global sheepmeat and beef production are expected to decrease by 2050. This decrease is predominately projected for the EU-27, New Zealand and Brazil due to their high level of climate action assumed under this scenario. China, India, Australia and the United States are the main countries supplanting lost global meat production. In particular, China becomes a greater producer of sheepmeat and beef while the United States is expected to produce more beef.

Figure 12: Scenario 2 - Deferral of global meat production in 2050

Figure 13 shows the deferral of global dairy production by 2050 for four dairy commodities. As described earlier, global production of all dairy commodities is expected to decrease under this scenario with the largest decrease projected for cheese production. Large falls in dairy production are projected for Brazil and the EU-27 in 2050 due to their high level of climate action. Although other third-party producers are picking up lost dairy production, not all lost production is deferred to third-party producers. Here, India, the US, China and Argentina are the main countries supplanting lost global dairy

NB: emissions-price embodied

production. In particular, the United States is expected to become a greater producer of cheese, butter and skim milk powder. China is projected to increase its production of whole milk powder, while India is expected to rise butter production significantly by 2050. Also, NZ production of whole milk powder, cheese and skim milk powder is slightly increased in 2050 compared to the baseline, again due to higher world prices implied by the global deficit.

6 Scenario 3: Medium Assistance/Competitor Agricultural Action

Table 9: Scenario 3 assumptions

#	Scenario name	Global	Rate of assistance	Emissions
		action	Nate of assistance	price
3	Med assistance/CAA	high	60% decreasing 1% yearly	As HWEN

This scenario (Table 9) assumed medium assistance for NZ producers with 60 per cent of the emissions price subsidised by the government from 2025 and a subsequent drop of assistance by 1 per cent annually. Also, under this scenario, global action for emissions reduction in the livestock sector is achieved by New Zealand's competitors (Brazil, EU-27, the UK and Australia).

Table 10 shows model projections on world production by commodity over the projection period 2021-2050. Results show a significant decrease in global production for all examined commodities due to the high level of global climate action assumed under this scenario. The largest production drop is projected for beef (- 13.0 million tonnes), followed by cheese (- 7.3 million tonnes), then WMP (-3.0 million tonnes) by 2050.

Commodity	2021-2025	2026-2030	2031-2035	2036-2040	2041-2045	2046-2050	Total
Beef	477	-1,107	-2,378	-2,922	-3,370	-3,746	-13,047
Sheepmeat	-40	-253	-324	-373	-423	-472	-1,884
Butter	-71	-164	-233	-248	-259	-267	-1,242
Cheese	-449	-956	-1,372	-1,452	-1,504	-1,543	-7,275
WMP	-186	-385	-543	-583	-616	-647	-2,961
SMP	-54	-127	-182	-196	-207	-215	-981
Meat	209	-1,494	-2,802	-3,350	-3,814	-4,219	-15,470
Dairy	-760	-1,632	-2,330	-2,480	-2,585	-2,672	-12,459

Table 10: Scenario 3 - World Production (000 tonnes)

For New Zealand, modelling results predicted meat and dairy production to decrease by 2050 as shown in Table 11. This is due to the higher pricing burden on NZ producers. In particular sheepmeat production is predicated to fall by 3 million tonnes by 2050, followed by beef production which is expected to fall by 2.9 million tonnes by 2050. Domestic dairy production is expected to fall slightly by 2050 with largest drops projected for butter (-185 kilo tonnes), then WMP (-159 kilo tonnes). This is in contrast to results from Scenario 2 where dairy production was predicted to increase by 2050 despite the introduction of the emissions price in 2025 which however was highly supported by the government. There is a similar occurrence of higher world prices for dairy, but unlike with high assistance, this does not totally offset the emissions pricing with medium government assistance assumed under this scenario.

Commodity	2021-2025	2026-2030	2031-2035	2036-2040	2041-2045	2046-2050	Total
Beef	-49	-367	-505	-570	-639	-713	-2,842
Sheepmeat	-42	-399	-526	-600	-677	-757	-3,001
Butter	2	-25	-32	-37	-43	-49	-185
Cheese	5	-2	-1	-2	-4	-6	-11
WMP	14	-23	-26	-33	-41	-50	-159
SMP	3	-16	-19	-22	-26	-30	-111
Meat	-88	-745	-1,005	-1,141	-1,284	-1,434	-5,697
Dairy	23	-66	-78	-95	-114	-135	-465

Table 11: Scenario 3 - New Zealand Production (000 tonnes)

Lower NZ producer prices due to the pricing of emissions and the subsequent drop in production lead to decreased NZ producer returns from meat and dairy commodities by 2050 (Table 12). Modelling results show significant drops in beef and sheepmeat returns which are predicted to fall by 31 per cent each by 2050 compared to the baseline. Dairy returns are predicted to fall slightly by 1.5 per cent by 2050 with the highest decrease predicted for butter returns (-3 per cent), then SMP (-2 per cent).

Commodity	2021-2025	2026-2030	2031-2035	2036-2040	2041-2045	2046-2050	Total
Beef	-3,281	-20,948	-27,373	-31,245	-35,229	-39,296	-157,374
Sheepmeat	-3,471	-27,282	-35,892	-41,445	-46,991	-52,458	-207,539
Butter	34	-3,413	-4,244	-5,046	-5,936	-6,880	-25,485
Cheese	760	49	450	281	13	-305	1,247
WMP	2,287	-3,125	-3,100	-4,210	-5,560	-7,017	-20,725
SMP	421	-2,502	-2,752	-3,316	-4,001	-4,764	-16,915
Meat	-6,683	-47,754	-62,664	-72,032	-81,506	-90,982	-361,621
Dairy	3,502	-8,992	-9,646	-12,291	-15,484	-18,966	-61,877
		%	6 change from	base scenari	0		
Beef	-4.6%	-27.2%	-33.2%	-35.8%	-38.5%	-41.3%	-31.2%
Sheepmeat	-3.7%	-26.7%	-32.5%	-35.2%	-37.9%	-40.7%	-30.7%
Butter	0.0%	-2.5%	-2.9%	-3.3%	-3.7%	-4.1%	-2.9%
Cheese	0.9%	0.1%	0.5%	0.3%	0.0%	-0.3%	0.2%
WMP	0.9%	-1.2%	-1.1%	-1.4%	-1.8%	-2.1%	-1.2%
SMP	0.3%	-1.9%	-1.9%	-2.1%	-2.4%	-2.7%	-1.9%
Meat	-3.5%	-23.3%	-28.7%	-31.2%	-33.8%	-36.5%	-27.1%
Dairy	0.6%	-1.4%	-1.4%	-1.7%	-2.1%	-2.4%	-1.5%

Table 12: Scenario 3 - New Zealand producer returns (million USD)

Under this scenario, modelling projections show an increase in New Zealand consumer spending for livestock commodities by 2050 (see Table 13). The increase in consumer spending for dairy commodities is predicted to be higher than the predicted increase in consumer spending on meat commodities. Total

spending on dairy commodities is predicted to increase by US\$5.3 billion by 2050 compared to the baseline, spending on meat commodities is expected to grow by US\$1.2 billion by 2050.

Commodity	2021-2025	2026-2030	2031-2035	2036-2040	2041-2045	2046-2050	Total
Beef	-16	60	117	143	163	181	648
Sheepmeat	-3	54	86	101	114	126	479
Butter	36	85	121	127	131	133	634
Cheese	93	210	312	339	359	375	1,689
WMP	4	9	12	13	14	15	67
SMP	146	355	531	589	637	679	2,936
Meat	-18	127	224	267	302	331	1,233
Dairy	280	659	977	1,069	1,140	1,202	5,327

Table 13: Scenario 3 - New Zealand consumer spending (million USD)

As a result of the predicted decrease in meat and dairy production, NZ GHG emissions from the two livestock types are expected to drop significantly by 2050 as shown in Figure 14. The projected decrease in livestock emissions under this scenario is significantly higher than reductions projected in Scenario 2 where the high government assistance with emissions pricing allowed growth in dairy production. Also, under this scenario by 2050 NZ livestock GHG emissions are projected to be below 2020 emissions levels.

Figure 15 shows NZ dairy price projections between 2021 and 2050. Unlike Scenario 2, it can be seen that dairy prices are slightly lower than those projected in the baseline scenario.

NB: emissions-price embodied

Figure 16shows modelling results with regards to the deferral of global meat production in 2050 for the two meat commodities. Overall, and as described earlier, global sheepmeat and beef production are expected to decrease by 2050. This is predominately expected for the EU-27, New Zealand, and Brazil whose predicted production falls are due to their high level of climate action assumed under this scenario. Here, China, India, Australia and the United States are the main countries supplanting lost global meat production. In particular, China is expected to become a greater producer of sheepmeat and beef while the United States is expected to produce more beef.

Figure 16: Scenario 3 -Deferral of global meat production in 2050

Figure 17 shows the deferral of global dairy production in 2050 for the four examined dairy commodities. As described earlier, global production of all dairy commodities is expected to decrease under this scenario, with projections showing the most significant decrease for global cheese production by 2050. The largest drop in dairy production is projected for Brazil and the EU-27 by 2050; this is due to the global climate action assumed in this scenario. The main countries supplanting lost global dairy production are India, the United States, China and Argentina. In particular, the United States is predicted to become a greater producer of cheese and butter by 2050. Both China and Argentina are projected to increase their production of whole milk powder, while India is expected to increase butter production significantly by 2050.

Figure 17: Scenario 3 -Deferral of global dairy production in 2050

7 Scenario 4: No Assistance/Competitor Agricultural Action

Table 14: Scenario 4 assumptions

#	Scenario name	Global	Rate of assistance	Emissions
		action	Nate of assistance	price
4	No assistance/CAA	high	none	As HWEN

This scenario (Table 14) assumed no assistance for NZ producers when the emissions price is implemented in 2025. In addition, under this scenario the level of global climate action is high. It is assumed that Brazil, EU-27, the UK and Australia fully achieve their agricultural climate commitments.

Model projections for world production by commodity between 2021 and 2050 are presented in Table 15. Results show a significant decrease in global production for all examined commodities due to high global climate action, similar to scenarios 2 and 3, which has a significant impact on the reduction of livestock production. The largest fall in global livestock production by 2050 is projected for beef (- 14.7 million tonnes), followed by cheese (- 7.3 million tonnes), then sheepmeat (- 3.7 million tonnes).

Commodity	2021-2025	2026-2030	2031-2035	2036-2040	2041-2045	2046-2050	Total
Beef	446	-1,400	-2,757	-3,273	-3,692	-4,039	-14,716
Sheepmeat	-89	-604	-719	-740	-761	-781	-3,694
Butter	-75	-191	-266	-278	-286	-292	-1,388
Cheese	-450	-968	-1,387	-1,466	-1,516	-1,554	-7,340
WMP	-191	-427	-595	-631	-659	-685	-3,190
SMP	-58	-152	-213	-224	-232	-238	-1,116
Meat	141	-2,025	-3,439	-3,944	-4,363	-4,722	-18,352
Dairy	-773	-1,738	-2,461	-2,599	-2,693	-2,769	-13,034

Table 15: Scenario 4 - World Production (000 tonnes)

Alongside the global decrease in meat production, NZ is facing the highest burden of emissions pricing with no assistance. Thus, as shown in Table 16, modelling results for NZ show that domestic meat production is expected to drop significantly by 12.3 million tonnes between 2021 and 2050, with an expected drop of beef and sheepmeat production by 6.5 million tonnes and 6.1 million tonnes, respectively. Similarly, dairy production is expected to decrease under this scenario with the largest fall projected for domestic WMP production (-738 kilo tonnes), followed by butter production (-531 kilo tonnes) by 2050.

Commodity	2021-2025	2026-2030	2031-2035	2036-2040	2041-2045	2046-2050	Total
Beef	-116	-1,007	-1,343	-1,347	-1,351	-1,360	-6,524
Sheepmeat	-110	-991	-1,220	-1,247	-1,275	-1,302	-6,145
Butter	-6	-89	-111	-109	-108	-108	-531
Cheese	2	-26	-32	-31	-30	-30	-147
WMP	2	-129	-159	-154	-150	-148	-738
SMP	-3	-63	-77	-75	-73	-72	-363
Meat	-217	-1,932	-2,484	-2,518	-2,552	-2,590	-12,294
Dairy	-5	-306	-378	-369	-362	-358	-1,779

Table 16: Scenario 4 - New Zealand Production (000 tonnes)

The decrease in domestic producer prices and production leads to a fall in New Zealand producer returns for the two meat commodities. As shown in Table 17, producer returns for meat are projected to drop significantly by 2050. Returns from beef are projected to decrease by 47 per cent while returns from sheepmeat are expected to fall by 40 per cent by 2050. Returns from dairy commodities are projected to drop slightly by 4.6 per cent by 2050 with the largest decrease expected for butter (-5.7 per cent) then SMP (-4.9 per cent).

Commodity	2021-2025	2026-2030	2031-2035	2036-2040	2041-2045	2046-2050	Total
Beef	-7,175	-47,991	-58,359	-60,525	-62,393	-64,066	-300,510
Sheepmeat	-8,189	-60,073	-72,606	-76,255	-79,371	-81,977	-378,472
Butter	-998	-10,950	-13,212	-13,477	-13,751	-14,027	-66,416
Cheese	281	-3,473	-3,727	-3,612	-3,567	-3,556	-17,654
WMP	70	-19,081	-21,889	-21,853	-21,904	-21,953	-106,610
SMP	-630	-10,012	-11,590	-11,651	-11,753	-11,871	-57,505
Meat	-15,175	-106,628	-129,237	-135,127	-140,170	-144,498	-670,835
Dairy	-1,277	-43,516	-50,418	-50,593	-50,975	-51,406	-248,184
		%	6 change from	ı base scenari	0		
Beef	-7.6%	-47.9%	-55.2%	-54.8%	-54.4%	-54.1%	-46.7%
Sheepmeat	-5.9%	-40.6%	-46.5%	-46.6%	-46.7%	-46.9%	-39.7%
Butter	-0.6%	-6.0%	-6.9%	-6.7%	-6.6%	-6.5%	-5.7%
Cheese	0.2%	-3.0%	-3.1%	-2.9%	-2.8%	-2.8%	-2.4%
WMP	0.0%	-5.4%	-5.9%	-5.6%	-5.4%	-5.2%	-4.7%
SMP	-0.4%	-5.6%	-6.1%	-5.8%	-5.5%	-5.3%	-4.9%
Meat	-5.8%	-38.9%	-44.9%	-45.0%	-45.2%	-45.4%	-38.3%
Dairy	-0.2%	-5.2%	-5.7%	-5.5%	-5.3%	-5.2%	-4.6%

Table 17: Scenario 4 - New Zealand producer returns (million USD)

Under this scenario, modelling projections show an increase in New Zealand consumer spending for livestock commodities by 2050 (see Table 18). The increase in consumer spending for dairy commodities

is predicted to be higher than the predicted increase in consumer spending for meat commodities. Spending on dairy commodities is predicted to increase by US\$5.8 billion by 2050 compared to the baseline, spending on meat commodities is expected to grow by US\$1.7 million USD by 2050.

Commodity	2021-2025	2026-2030	2031-2035	2036-2040	2041-2045	2046-2050	Total
Beef	-13	95	160	182	200	214	838
Sheepmeat	3	109	152	163	171	177	774
Butter	37	97	136	141	143	144	698
Cheese	94	214	317	344	363	379	1,709
WMP	4	10	13	14	15	16	73
SMP	153	419	615	667	709	745	3,309
Meat	-9	219	335	370	396	417	1,728
Dairy	288	740	1,082	1,166	1,230	1,283	5,789

Table 18: Scenario 4 -New Zealand consumer spending (million USD)

As a result of the predicted decreases in meat and dairy production associated with the emissions price and the high level of global climate action of competitor countries, NZ GHG emissions from the two livestock types are expected to drop significantly by 2050 as shown in Figure 18. The projected reduction in livestock emissions under this scenario is the greatest of the three global action scenarios, with no government assistance assumed. Under this scenario emissions drop strongly in 2025 as the emissions price is introduced, before decreasing gradually until 2030 as the emissions price increases. After 2030 however emission rise slightly as the emissions price has stabilised and prices rise.

Figure 18: Scenario 4 -New Zealand emissions for dairy & red meat

Figure 19 shows projection of the NZ dairy price by 2050. It can be seen that dairy prices drop below baseline levels from 2024 onwards, albeit rising relative to the baseline after 2030.

NB: emissions-price embodied

This scenario implies the highest lost production in New Zealand and its trade competitors. In particular, production losses are projected for the EU-27, Brazil and New Zealand. China and the United States are the main countries supplanting lost global beef production (see Figure 20). In particular, China is projected to become a greater producer of sheepmeat and to a lesser extent of beef commodities, while the United States are projected to become a greater producer of spectra greater producer of beef by 2050.

Figure 21 shows the deferral of global dairy production by 2050 for the four examined dairy commodities. As described earlier, global production of all dairy commodities is expected to decrease under this scenario, with projections showing the most significant decrease for global cheese production. In particular, production losses for dairy commodities are projected for the EU-27, Brazil and New Zealand. Here, China, India, the United States and Argentina are the main countries supplanting lost global dairy production. The United States is expected to become a greater producer of cheese and skim milk powder. China is projected to increase its production of whole milk powder while India increases butter production by 2050.

Figure 21: Scenario 4 -Deferral of global dairy production in 2050

8 Scenario 5: High Assistance

Table 19: Scenario 5 assumptions

#	Scenario name	Global	Rate of assistance	Emissions
		action	Nate of assistance	price
5	High assistance	none	95% decreasing 1% yearly	As HWEN

This scenario (Table 19) assumed high assistance for NZ producers with 95 per cent of the emissions price subsidised by the government from 2025 and a subsequent drop of assistance by 1 per cent annually. Scenario 5 (High Assistance) also assumes that competitor markets have no established climate policy commitments for agricultural production, thus enabling them to make up the shortfall from decreases in New Zealand production of red meat (beef and sheepmeat) and dairy commodities (butter, cheese, WMP and SMP).

Table 20 shows changes in world production of red meat (beef and sheepmeat) and dairy commodities (butter, cheese, WMP and SMP) resulting from this scenario. Modelling results show that global meat production is projected to decrease by 723 kilo tonnes over the projection period. In more detail, reductions in world sheepmeat production are expected (-488 kilo tonnes) and to a slightly lesser extent global beef production is projected to drop by 370 kilo tonnes by 2050. The reduction of meat production is set to increase over time, with relatively greater reductions in world meat production closer to 2050 than the start of this period as government assistance decreases.

Similarly, world dairy production is projected to decrease under this scenario, with total production projected to decrease by 148 kilo tonnes over the projection period. Under this scenario, reductions in world WMP were predicted (-56 kilo tonnes), followed by butter (-37 kilo tonnes total), SMP (-33 kilo tonnes) and cheese (-22 kilo tonnes).

Commodity	2021-2025	2026-2030	2031-2035	2036-2040	2041-2045	2046-2050	Total
Beef	-2	-21	-41	-71	-101	-133	-370
Sheepmeat	-4	-30	-56	-94	-132	-172	-488
Butter	-0	-2	-4	-7	-10	-13	-37
Cheese	-0	-1	-2	-4	-6	-8	-22
WMP	-0	-3	-7	-11	-15	-19	-56
SMP	-0	-2	-4	-6	-9	-11	-33
Meat	-5	-42	-82	-138	-197	-259	-723
Dairy	-1	-9	-17	-29	-40	-52	-148

Table 20: Scenario 5 - World Production (000 tonnes)

Table 21 shows changes in NZ production of red meat (beef and sheepmeat) and dairy commodities (butter, cheese, WMP and SMP) resulting from this policy scenario. This shows a reduction in total meat production of 1.6 million tonnes over the period 2021 to 2050, with reductions increasing over time (from 10 kilo tonnes in the period 2021-2025 to 573 kilo tonnes in the period 2046-2050). These reductions are relatively evenly split between sheepmeat (total reduction of 839 kilo tonnes) and beef production (total reduction 799 kilo tonnes), with reductions also increasing over time.

Similarly, New Zealand dairy production is projected to decrease over time in this scenario, with total reductions of 313 kilo tonnes. This comprises reductions in New Zealand WMP production (- 138 kilo tonnes), followed by butter (- 83 kilo tonnes), SMP (- 60 kilo tonnes) and cheese (- 32 kilo tonnes) by 2050.

Commodity	2021-2025	2026-2030	2031-2035	2036-2040	2041-2045	2046-2050	Total
Beef	-5	-46	-90	-153	-219	-287	-799
Sheepmeat	-5	-50	-96	-161	-228	-299	-839
Butter	-1	-5	-10	-16	-23	-29	-83
Cheese	-0	-2	-4	-6	-9	-11	-32
WMP	-1	-9	-16	-27	-37	-48	-138
SMP	-0	-4	-7	-12	-16	-21	-60
Meat	-10	-93	-181	-306	-437	-573	-1,600
Dairy	-2	-19	-37	-61	-85	-109	-313

Table 21: Scenario 5 - New Zealand Production (000 tonnes)

Reductions in NZ meat and dairy production associated with the advent of emissions pricing, will also impact NZ producer returns as shown in Table 22. NZ producer returns for meat and dairy are projected to decrease, with these reductions progressively increasing over time. NZ producer returns for meat (beef and sheepmeat) are projected to decrease by 6.4 per cent by 2050 compared to the baseline. Dairy is also projected to experience reductions in returns for NZ producers by 1 per cent. WMP is projected to experience the greatest reduction in returns (-1 per cent), followed by butter and SMP (-0.9 per cent, each). Overall, meat is projected to experience greater reductions in returns relative to dairy, which reflects the relative decrease in production volume.

Commodity	2021-2025	2026-2030	2031-2035	2036-2040	2041-2045	2046-2050	Total
Beef	-362	-2,845	-5,591	-9,425	-13,410	-17,500	-49,133
Sheepmeat	-458	-3,662	-7,164	-12,095	-17,228	-22,482	-63,089
Butter	-88	-637	-1,238	-2,077	-2,954	-3,865	-10,859
Cheese	-40	-293	-564	-938	-1,325	-1,723	-4,883
WMP	-187	-1,343	-2,602	-4,355	-6,186	-8,082	-22,755
SMP	-89	-633	-1,231	-2,068	-2,945	-3,859	-10,825
Meat	-813	-6,454	-12,657	-21,363	-30,424	-39,711	-111,422
Dairy	-405	-2,905	-5,635	-9,438	-13,411	-17,528	-49,321
		%	6 change from	base scenari	0		
Beef	-0.4%	-2.8%	-5.3%	-8.5%	-11.7%	-14.8%	-7.6%
Sheepmeat	-0.3%	-2.5%	-4.6%	-7.4%	-10.1%	-12.9%	-6.6%
Butter	-0.1%	-0.3%	-0.6%	-1.0%	-1.4%	-1.8%	-0.9%
Cheese	0.0%	-0.3%	-0.5%	-0.8%	-1.0%	-1.3%	-0.7%
WMP	-0.1%	-0.4%	-0.7%	-1.1%	-1.5%	-1.9%	-1.0%
SMP	-0.1%	-0.4%	-0.6%	-1.0%	-1.4%	-1.7%	-0.9%
Meat	-0.3%	-2.4%	-4.4%	-7.1%	-9.8%	-12.5%	-6.4%

Table 22: Scenario 5 -New Zealand	I producer returns	(million USD)
-----------------------------------	--------------------	---------------

Table 23 shows impacts on NZ consumer spending on meat and dairy under this scenario. NZ consumer spending on meat is projected to increase by 2050 (+ US\$124 million) alongside spending on dairy (\$US113 million). Across all commodities, largest increase in NZ consumer spending is projected for SMP (+US\$90 million) and sheepmeat products (+US\$75 million) by 2050.

Commodity	2021-2025	2026-2030	2031-2035	2036-2040	2041-2045	2046-2050	Total
Beef	0	3	5	9	13	17	47
Sheepmeat	0	5	9	14	20	27	75
Butter	0	1	2	3	4	5	15
Cheese	0	0	1	1	2	2	6
WMP	0	0	0	0	0	0	1
SMP	1	5	10	17	25	32	90
Meat	1	7	14	24	34	44	124
Dairy	1	7	13	22	31	40	113

Table 23: Scenario	5-New	Zealand	consumer s	pending	(million	USD)
		=====		P C	·····	,

Figure 22 shows projected changes in NZ GHG emissions for red meat and dairy production compared to the baseline. NZ GHG emissions are projected to decrease in 2025 with the introduction of the emissions price, and then are projected gradually to increase until 2033, before declining until 2050, ultimately equating to slightly higher than 2020 emissions in the year 2050. This reflects the increasing burden of emission prices as the government assistance is removed year on year.

Figure 22: Scenario 5 -New Zealand emissions for dairy & red meat

Figure 23 shows projected changes for a weighted average NZ producer price for dairy, including the embodied emissions price. This shows a slight decrease from the baseline over time, with the NZ producer price index for dairy projected to be valued at approximately 120 relative to the baseline (approximately 122). This shows that, in this scenario, the dairy price is still expected to rise, but unlike Scenario 2, with no global action, NZ producer prices are expected to decrease compared to the baseline scenario.

Figure 23: Scenario 5 -New Zealand producer price for dairy

With the declining production volumes for meat and dairy predicted in this Scenario, NZ's export competitors are expected to capture the opportunity to fill this shortfall on the global market. As such, Figure 24 shows the various impacts on the deferral of global meat production in 2050. For sheepmeat, global and domestic production is projected to decrease, leaving a gap in the global market for sheepmeat supply. In response to this shortfall, China, India, EU-27 and Australia are all expected to increase production relative to the baseline. For beef, Brazil, the United States, EU-27 and China are projected to become a greater producers by 2050.

NB: emissions-price embodied

Figure 24: Scenario 5 -Deferral of global meat production in 2050

Similarly, Figure 25 shows the various impacts on the deferral of global dairy commodity production (including butter, cheese, SMP and WMP) in 2050. For all dairy commodities modelled, domestic and global production is projected to decrease, leaving a gap in the global market for each commodity. However, it should be noted that for each commodity examined, the deferral of world dairy production is still not sufficient to replace New Zealand's deficit completely. The main countries supplanting lost global dairy production are India, EU-27, Australia, Brazil, Japan, the United States and China. In particular, India is projected to become a greater exporter of butter in 2050 while Argentina is projected to export more cheese in 2050. In addition, China is projected to increase their production of WMP while the United States is expected to increase SMP production by 2050.

Figure 25: Scenario 5 -Deferral of global dairy production in 2050

9 Scenario 6: Medium Assistance

Table 24: Scenario 6 assumptions

#	Scenario name	Global	Rate of assistance	Emissions
	Scenario name	action	Nate of assistance	price
6	Med assistance	none	60% decreasing 1% yearly	As HWEN

This scenario (Table 24) assumed medium assistance for NZ producers with 60 per cent of the emissions price subsidised by the government from 2025 onwards with a subsequent drop of assistance by 1 per cent annually. In addition, no climate policy action from competitor countries was assumed in this scenario.

Table 25 shows changes in world production of red meat (beef and sheepmeat) and dairy commodities (butter, cheese, WMP and SMP) resulting from this scenario. This shows that total world meat production is projected to decrease by 2.6 million tonnes between 2021 and 2050. Large reductions in world sheepmeat production are projected (- 1.7 million tonnes) as well as reductions in global beef production (-1.4 million tonnes). The reduction of meat production is set to increase over time, with relatively greater reductions in world meat production closer to 2050 than at the start of this period as government assistance with emissions pricing decreases.

Similarly, world dairy production is projected to decrease under this scenario, with total production projected to decrease by 546 kilo tonnes by 2050. Under this scenario, relatively larger reductions in global WMP production were projected (-208 kilo tonnes), followed by butter (-136 kilo tonnes), SMP (-122 kilo tonnes) and cheese (-81 kilo tonnes).

Commodity	2021-2025	2026-2030	2031-2035	2036-2040	2041-2045	2046-2050	Total
Beef	-18	-175	-247	-281	-316	-353	-1,390
Sheepmeat	-32	-236	-301	-342	-386	-431	-1,728
Butter	-3	-18	-24	-27	-30	-33	-136
Cheese	-1	-10	-15	-17	-19	-21	-81
WMP	-3	-28	-38	-42	-46	-50	-208
SMP	-2	-17	-22	-24	-27	-29	-122
Meat	-43	-343	-456	-521	-590	-663	-2,616
Dairy	-9	-73	-99	-110	-122	-134	-546

Table 25: Scenario 6 - World Production (000 tonnes)

Table 26 shows changes in New Zealand production of red meat (beef and sheepmeat) and dairy commodities (butter, cheese, WMP and SMP) resulting from this scenario. This shows a reduction in total meat production of 5.9 million tonnes between 2021 and 2050, with reductions increasing over time (from 79 kilo tonnes in the period 2021-2025 to 1.5 million tonnes in the period 2046-2050). These reductions are relatively evenly split between sheepmeat (-3 million tonnes) and beef production (- 3 million tonnes) by 2050.

Similarly, NZ dairy production is projected to decrease over time in this scenario, with total reductions of 1.2 million tonnes of total dairy production by 2050. This comprises reductions in New Zealand WMP production (- 511 kilo tonnes), followed by butter (- 306 kilo tonnes), SMP (-223 kilo tonnes) and cheese (- 120 kilo tonnes) between 2021 and 2050.

Commodity	2021-2025	2026-2030	2031-2035	2036-2040	2041-2045	2046-2050	Total
Beef	-39	-379	-539	-613	-689	-768	-3,027
Sheepmeat	-44	-399	-526	-600	-676	-756	-3,000
Butter	-5	-41	-55	-62	-68	-75	-306
Cheese	-2	-16	-22	-24	-27	-30	-120
WMP	-9	-69	-92	-103	-114	-125	-511
SMP	-4	-30	-40	-45	-49	-54	-223
Meat	-79	-757	-1,037	-1,182	-1,332	-1,487	-5,874
Dairy	-19	-157	-209	-233	-258	-284	-1,160

Table 26: Scenario 6 -New Zealand Production (000 tonnes)

Reductions in NZ meat and dairy production will also impact NZ producer returns as shown in Table 27. Modelling results show that NZ producer returns for both meat and dairy are projected to decrease, with these reductions progressively increasing over time. NZ producer returns for meat production (beef and sheepmeat) are projected to decrease by 21.2 per cent by 2050 compared to the baseline. NZ producer returns for dairy commodities are also projected to decrease by 2050. Overall, returns from dairy are expected to fall by 3.3 per cent by 2050 with the largest fall projected for returns from WPM (-3.5 per cent), then butter and SMP (-.3.3 per cent, each) by 2050. Overall, meat is projected to experience greater reductions in returns relative to dairy, which reflects the relative decrease in production volume.

Commodity	2021-2025	2026-2030	2031-2035	2036-2040	2041-2045	2046-2050	Total
Beef	-2,826	-21,571	-28,882	-33,141	-37,401	-41,667	-165,488
Sheepmeat	-3,534	-27,360	-35,980	-41,564	-47,135	-52,618	-208,191
Butter	-699	-5,068	-6,699	-7,695	-8,713	-9,753	-38,627
Cheese	-323	-2,336	-3,062	-3,489	-3,921	-4,359	-17,490
WMP	-1,493	-10,691	-14,041	-16,106	-18,217	-20,370	-80,918
SMP	-708	-5,040	-6,631	-7,638	-8,670	-9,725	-38,413
Meat	-6,296	-48,465	-64,272	-74,058	-83,831	-93,521	-370,443
Dairy	-3,223	-23,135	-30,433	-34,928	-39,520	-44,208	-175,447
		%	6 change from	base scenari	0		
Beef	-3.0%	-21.5%	-27.3%	-30.0%	-32.6%	-35.2%	-25.7%
Sheepmeat	-2.5%	-18.5%	-23.0%	-25.4%	-27.7%	-30.1%	-21.9%
Butter	-0.4%	-2.8%	-3.5%	-3.8%	-4.2%	-4.6%	-3.3%
Cheese	-0.3%	-2.0%	-2.6%	-2.8%	-3.1%	-3.4%	-2.4%
WMP	-0.4%	-3.0%	-3.8%	-4.1%	-4.5%	-4.8%	-3.5%
SMP	-0.4%	-2.8%	-3.5%	-3.8%	-4.1%	-4.4%	-3.3%
Meat	-2.4%	-17.7%	-22.3%	-24.7%	-27.0%	-29.4%	-21.2%
Dairy	-0.4%	-2.7%	-3.4%	-3.8%	-4.1%	-4.5%	-3.3%

Table 27: Scenario 6 - New Zealand producer returns (million USD)

Table 28 shows impacts on New Zealand consumer spending on meat and dairy over the projection period. Across all commodities, NZ consumer spending on meat and dairy is expected to increase over time. Modelling results project and increase of US\$451 million spending on meat products and US\$418 million on dairy products between 2021 and 2050.

Commodity	2021-2025	2026-2030	2031-2035	2036-2040	2041-2045	2046-2050	Total
Beef	2	22	30	34	39	43	170
Sheepmeat	4	36	48	55	61	68	272
Butter	1	8	11	12	13	14	58
Cheese	0	3	4	5	5	6	23
WMP	0	1	1	1	1	1	5
SMP	5	42	59	67	75	84	332
Meat	6	59	80	91	102	113	451
Dairy	6	53	74	84	95	105	418

Table 28: Scenario 6 - New Zealand consumer spending (million USD)

Figure 26 shows projected changes in NZ GHG emissions for red meat and dairy production compared to the baseline scenario. Results show that GHG emissions decrease in 2025 with the introduction of the emissions price, and then are projected to gradually decrease over the modelled period, ultimately equating to approximately just under 25 MtCO₂e in the year 2050.

Figure 26: Scenario 6 -New Zealand emissions for dairy & red meat

Figure 27 shows the projected changes for a weighted average NZ producer price for dairy. This shows a slight decrease from the baseline over time, with the NZ producer price index for dairy projected to be valued at approximately 117 relative to the baseline (approximately 122). This shows that, in this scenario, the dairy price is still expected to rise, but remain lower than in the baseline.

Figure 27: Scenario 6 -New Zealand producer price for dairy

With the declining production volumes for meat and dairy shown in this scenario, it is likely that NZ competitor countries could capture the opportunity to fill this shortfall on the global market. Figure 28 shows the various impacts on the deferral of global meat production for sheepmeat and beef in 2050. The main countries supplanting lost global meat production areChina, India, the United States, Brazil, EU-27 and Australia that are projected to become greater exporters of red meat commodities by 2050.

NB: emissions-price embodied

Figure 28: Scenario 6 -Deferral of global meat production in 2050

Figure 29 shows the various impacts on the deferral of global dairy commodity production (including butter, cheese, SMP and WMP) in 2050. For all dairy commodities modelled, NZ production is projected to decrease, leaving a gap in the global market for each commodity. However, it should be noted that for each commodity examined, with New Zealand's production deficit in each dairy commodity, the deferral of world dairy production is still not sufficient to replace New Zealand's decreased production completely.

The main countries supplanting lost global dairy production are India, EU-27, Australia, Brazil, Japan, the United States and China. In particular, India is projected to become a greater exporter of butter in 2050 while Argentina is projected to export more cheese in 2050. In addition, China is projected to increase their production of WMP while the United States is expected to increase SMP production by 2050.

Figure 29: Scenario 6 -Deferral of global dairy production in 2050

10 Scenario 7: No Assistance

Table 29: Scenario 7 assumptions

#	Scenario name	Global	Rate of assistance	Emissions
	Scenario name	action	Nate of assistance	price
7	No assistance	none	none	As HWEN

This scenario (Table 29) assumed no assistance for NZ producers with emissions pricing implemented in 2030. Also, under this scenario, there is no global climate action from any other countries. Although this scenario is unlikely to occur it provides a good insight into the impact of NZ climate policy on global and domestic livestock production and GHG emissions from livestock

Table 30 shows model projections on world production by commodity over the projection period 2021-2050. Results show a slight decrease in global production for all examined commodities due to decreases in New Zealand production associated with the introduction of emissions pricing for livestock emissions, with larger decreases projected for meat production and to a lesser extent to dairy production. The largest production drop is projected for sheepmeat (-3.5 million tonnes), followed by beef (- 3 million tonnes), then WMP (-447 kilo tonnes) by 2050.

Commodity	2021-2025	2026-2030	2031-2035	2036-2040	2041-2045	2046-2050	Total
Beef	-49	-469	-625	-631	-638	-647	-3,059
Sheepmeat	-81	-584	-691	-706	-721	-737	-3,519
Butter	-7	-46	-58	-58	-59	-59	-288
Cheese	-2	-25	-35	-36	-36	-36	-169
WMP	-9	-72	-93	-92	-91	-91	-447
SMP	-6	-43	-54	-53	-53	-52	-260
Meat	-111	-873	-1,090	-1,113	-1,138	-1,166	-5,491
Dairy	-23	-186	-240	-239	-238	-238	-1,164

Table 30: Scenario 7 - World Production (000 tonnes)

For New Zealand, modelling results predicted meat and dairy production to decrease significantly by 2050 as shown in Table 31. In particular beef production is predicated to fall by 6,738 kilo tonnes by 2050, followed by sheepmeat production which is expected to fall by 6.1 million tonnes by 2050. Also, domestic dairy production is expected to fall by 2050 with largest drops projected for WMP (-1 million tonnes), then butter (-655 kilo tonnes). NZ production losses predicted in this scenario are the highest compared to the other scenarios. This result is expected as NZ is the only country that has climate action in place in this scenario, with no government assistance.

Commodity	2021-2025	2026-2030	2031-2035	2036-2040	2041-2045	2046-2050	Total
Beef	-105	-1,021	-1,383	-1,397	-1,408	-1,424	-6,738
Sheepmeat	-112	-991	-1,219	-1,246	-1,273	-1,301	-6,142
Butter	-13	-104	-134	-134	-135	-135	-655
Cheese	-5	-41	-53	-53	-53	-53	-258
WMP	-21	-176	-227	-226	-225	-225	-1,101
SMP	-10	-78	-99	-98	-97	-97	-478
Meat	-208	-1,946	-2,521	-2,565	-2,605	-2,649	-12,496
Dairy	-48	-399	-513	-512	-510	-510	-2,493

Table 31: Scenario 7 - New Zealand Production (000 tonnes)

The impact of the emissions price with no government assistance and the subsequent drop in production leads to decreased NZ producer returns from meat and dairy commodities. Modelling results (Table 32) show significant drops in beef and sheepmeat returns which are predicted to fall by 47 per cent and 40 per cent, respectively by 2050. Dairy returns are predicted to fall by 7 per cent by 2050 with the highest decrease predicted for WMP returns (-7.3 per cent), then butter (-6.8 per cent).

Commodity	2021-2025	2026-2030	2031-2035	2036-2040	2041-2045	2046-2050	Total
Beef	-6,722	-48,460	-59,442	-61,934	-64,059	-65,939	-306,555
Sheepmeat	-8,250	-60,139	-72,671	-76,343	-79,480	-82,100	-378,983
Butter	-1,728	-12,565	-15,610	-16,075	-16,483	-16,861	-79,323
Cheese	-800	-5,820	-7,177	-7,325	-7,449	-7,564	-36,135
WMP	-3,699	-26,515	-32,625	-33,558	-34,384	-35,145	-165,926
SMP	-1,756	-12,504	-15,399	-15,907	-16,361	-16,776	-78,704
Meat	-14,788	-107,166	-130,378	-136,615	-141,935	-146,482	-677,365
Dairy	-7,984	-57,403	-70,812	-72,865	-74,677	-76,346	-360,088
		%	change from	base scenari	0		
Beef	-7.1%	% -48.3%	change from -56.3%	base scenari -56.0%	o -55.8%	-55.7%	-47.6%
Beef Sheepmeat	-7.1% -5.9%	% -48.3% -40.6%	6 change from -56.3% -46.5%	base scenario -56.0% -46.6%	o -55.8% -46.8%	-55.7% -46.9%	-47.6% -39.8%
Beef Sheepmeat Butter	-7.1% -5.9% -1.0%	% -48.3% -40.6% -6.8%	6 change from -56.3% -46.5% -8.1%	base scenario -56.0% -46.6% -8.0%	o -55.8% -46.8% -7.9%	-55.7% -46.9% -7.9%	-47.6% -39.8% -6.8%
Beef Sheepmeat Butter Cheese	-7.1% -5.9% -1.0% -0.7%	% -48.3% -40.6% -6.8% -5.0%	6 change from -56.3% -46.5% -8.1% -6.0%	base scenario -56.0% -46.6% -8.0% -5.9%	o -55.8% -46.8% -7.9% -5.9%	-55.7% -46.9% -7.9% -5.9%	-47.6% -39.8% -6.8% -5.0%
Beef Sheepmeat Butter Cheese WMP	-7.1% -5.9% -1.0% -0.7% -1.1%	-48.3% -40.6% -6.8% -5.0% -7.5%	6 change from -56.3% -46.5% -8.1% -6.0% -8.7%	base scenario -56.0% -46.6% -8.0% -5.9% -8.6%	o -55.8% -46.8% -7.9% -5.9% -8.5%	-55.7% -46.9% -7.9% -5.9% -8.4%	-47.6% -39.8% -6.8% -5.0% -7.3%
Beef Sheepmeat Butter Cheese WMP SMP	-7.1% -5.9% -1.0% -0.7% -1.1% -1.1%	-48.3% -40.6% -6.8% -5.0% -7.5% -7.0%	5 change from -56.3% -46.5% -8.1% -6.0% -8.7% -8.1%	base scenario -56.0% -46.6% -8.0% -5.9% -8.6% -7.9%	o -55.8% -46.8% -7.9% -5.9% -8.5% -7.7%	-55.7% -46.9% -7.9% -5.9% -8.4% -7.6%	-47.6% -39.8% -6.8% -5.0% -7.3% -6.7%
Beef Sheepmeat Butter Cheese WMP SMP Meat	-7.1% -5.9% -1.0% -0.7% -1.1% -1.1% -5.7%	-48.3% -40.6% -6.8% -5.0% -7.5% -7.0% -39.1%	5 change from -56.3% -46.5% -8.1% -6.0% -8.7% -8.1% -45.3%	base scenario -56.0% -46.6% -8.0% -5.9% -8.6% -7.9% -45.5%	o -55.8% -46.8% -7.9% -5.9% -8.5% -7.7% -45.8%	-55.7% -46.9% -7.9% -5.9% -8.4% -7.6% -46.0%	-47.6% -39.8% -6.8% -5.0% -7.3% -6.7% -38.7%

Table 32: Scenario 7 - New Zealand producer returns (million USD)

Under this scenario, modelling projections show a slight increase in New Zealand consumer spending for livestock commodities by 2050 (see Table 33). The increase in consumer spending for meat commodities is predicted to be higher than the predicted increase in consumer spending for dairy commodities. Spending on meat commodities is predicted to increase by US\$939 million over the projection period, spending on dairy commodities is expected to grow by US\$892 million.

Commodity	2021-2025	2026-2030	2031-2035	2036-2040	2041-2045	2046-2050	Total
Beef	6	56	71	73	75	76	356
Sheepmeat	9	91	113	115	117	118	563
Butter	2	20	26	26	25	25	124
Cheese	0	7	10	10	10	11	48
WMP	0	2	2	2	2	2	10
SMP	12	108	143	146	149	151	709
Meat	15	150	189	192	195	198	939
Dairy	14	136	181	185	187	189	892

Table 33: Scenario 7 -New Zealan	d consumer spending	(million USD)
----------------------------------	---------------------	---------------

As a result of the predicted fall in NZ meat and dairy production, NZ GHG emissions from the two livestock types are expected to decrease over time as shown in Figure 30. This shows that NZ climate policies assumed under this scenario are successful in reducing livestock emissions. Compared to the previous scenarios, this scenario has the largest decrease in NZ GHG emissions from livestock production; and by 2050 NZ GHG emissions are projected to be below 2020 emissions levels.

Figure 30: Scenario 7 -New Zealand emissions for dairy & red meat

Figure 31 shows projections of the NZ dairy price between 2021 and 2050. Under this scenario, NZ dairy prices are expected to be lower than prices under the baseline scenario, while still increasing from the base year.

NB: emissions-price embodied

Figure 32 shows modelling results with regards to the deferral of global meat production by 2050 for the two examined meat commodities. As described earlier, NZ sheepmeat and beef production are expected to decrease significantly by 2050; global meat production is also predicted to drop but to a lesser extent. However, NZ is the only country with a projected decrease in meat production due to its high climate change action assumed in this scenario. Here, China, India, EU-27, Australia, Brazil and the United States are the main countries supplanting lost global meat production. In particular, China becomes a greater exporter of sheepmeat while Brazil is expected to export more beef.

Figure 32: Scenario 7 -Deferral of global meat production in 2050

Figure 33 shows the deferral of global dairy production by 2050 for the four examined dairy commodities. As described earlier, NZ dairy production is expected to decrease by 2050; global dairy production is also predicted to fall but to a lesser extent as other third-party producers supplant lost dairy production. Not all lost production is deferred to third-party producers however. Here, India, EU-27, the United States, Argentina, Brazil, China and Japan are the main countries supplanting lost global dairy production. In particular, the United States is expected to become a greater exporter SMP. Interestingly the EU decreases its production of Cheese while under no climate constraints. This may be due to cross-price effects with Butter and WMP, where the EU is prioritising different sub-sectors of dairy production. China is projected to increase its production of WMP, while India is expected to rise butter production significantly by 2050. Finally, Argentina is expected to increase cheese production by 2050.

Figure 33: Scenario 7 -Deferral of global dairy production in 2050

11 Conclusion

This modelling exercise has demonstrated the expected changes on domestic and global production in livestock commodities, given domestic emissions pricing and with or without global action on climate change.

Importantly, all scenarios demonstrated decreases in global emissions. While emissions leakage did occur, with decreased production in New Zealand being supplanted with production in competitors and other third party countries, on aggregate these changes did not offset emissions savings in New Zealand. Across the scenarios roughly half of the emission savings in New Zealand were reflected in global emissions savings as some lost production was fulfilled elsewhere globally.

Interestingly, all scenarios showed a decrease in total global production, which implies the ability of other countries to increase production in response to higher world prices was insufficient to replace deficits in global supply left by New Zealand and its competitors. This would imply continuing higher prices for consumers and producers due to less supply in global markets for these livestock products, and the potential for other countries to increase their production of these goods further into the future than modelled in this exercise.

In terms of deferred production, the following countries were seen to increase production given domestic and global production deficits (in order of production growth), where asterisk indicate countries which only increased production in scenarios without competitor action:

Sheepmeat – China, India, the European Union*, Australia
Beef – Brazil*, United States, the European Union*, China
Butter – India, the European Union*, the United States, Australia*
Cheese – Argentina, the United States, Brazil*
Whole Milk Powder – China, the European Union*, Argentina, Brazil*

Skim Milk Powder – the United States, India, Brazil*, Japan

The three scenarios assuming competitor action demonstrated higher world prices for goods as their production declined relative to the base scenario. This competitor action reduced the burden on New Zealand producers by offsetting some of the costs implied with the emissions price. This was particularly pronounced in Scenario 2, where New Zealand dairy prices rose above their baseline level even when accounting for the emissions price. This however was under the highest level of government assistance and did not last until the end of the modelled period in 2050, as the assistance decreased and third party countries increased their production. This implies that while overseas action helps soften the impact of domestic emission pricing, even given the highest level of assistance and the highest level of competitor action, it is not sufficient to fully off-set the additional cost over the long term.

While all scenarios were effective at reducing New Zealand's livestock emissions, this did imply significant decreases in producer returns as production decreased, and higher prices for New Zealand consumers. Emissions from New Zealand's agricultural production is an externality whose cost has yet to be embodied in the price of agricultural goods. The implementation of an emissions price would help embody this cost in prices, yet the implied change in producer returns and consumer spending may imply a transitional period for New Zealand agricultural producers, for which the level of assistance and reduction will be important in mitigating social costs associated with sudden changes in returns.

References

Guenther, M., Saunders, J.T. & Driver, T. (2022). Emissions targets of New Zealand's agricultural export competitors – a literature review. Client Report prepared for the New Zealand Climate Change Commission. AERU. April.

He Waka Eke Noa. (2022). Agricultural emissions pricing options: Consultation Document. Feb.

OECD (2021). Global Assessment of the Carbon Leakage Implications of Carbon Taxes on Agricultural Emissions. OECD Food, Agriculture and Fisheries Paper no. 170, Paris. October

Revell, B. J., B. Bansback, D. May, C. Saunders, R. Lilywhite, M. Dutra de Barcellos, L. F. Nascimento, H. Palau and J. Saunders (2013) "Assessing the Environmental Impact of Liberalising Agricultural Trade - With Special Reference to EU-Mercosur." Report for Department for Environment, Food and Rural Affairs. Warwick, UK: Harper Adams University.

Roningen, V. O. (1997) Multi-market, multi-region partial equilibrium modeling. Chapter in J. F. François and K. A. Reinert (Eds), Applied Methods for Trade Policy Analysis: A Handbook. Cambridge: Cambridge University Press, pp. 231-257.

Saunders, C. and S. Çağatay (2004) Trade and the environment: Economic and environmental impacts of global dairy trade liberalization. Journal of Environmental Assessment Policy and Management, 6(3), pp. 1-27.

Saunders, C., P. Dalziel, M. Guenther, J. Saunders and P. Rutherford (2016) The Land and the Brand. AERU Research Report No. 339, prepared for AGMARDT, ANZCO Foods, Beef and Lamb New Zealand, Fonterra and Zespri. Lincoln University: Agribusiness and Economics Research Unit.

Saunders, J. and C. Saunders (2015) Modelling Agricultural Impacts of EU-NZ Trade. Report for EU Commission. Lincoln University: Agribusiness and Economics Research Unit.

Stehfest, E., van Vuuren, D., Karm, T. & Bouwman, L (Eds.) (2014). Integrated Assessment of Global Environmental Change with IMAGE 3.0 Model description and policy applications. PBL Netherland Environmental Assessment Agency, publication no. 735.

Appendix

Table A 1: Commodities in the LTEM

Category	Commodity
Сгор	Wheat
	Maize
	Other Grain
	Rice
	Sugar
Oilseeds	Oilseeds
	Oilseed Meals
	Oils
Meat	Beef
	Sheepmeat
	Pig meat
Poultry	Poultry meat
	Eggs
Dairy	Liquid milk
	Butter
	Cheese
	Skim Milk Powder
	Whole Milk Powder
Fruit	Apples
	Kiwifruit
Forestry	Roundwood
	Sawnwood
	Panelwood
	Fuelwood
	Paper
	Pulp

Table A 2: Countries in the LTEM

Argentina	New Zealand
Australia	Norway
Brazil	Russian Federation
Canada	South Africa
China	Switzerland
European Union	Turkey
(27)	runkoy
United Kingdom	United States
India	Chile
Japan	Paraguay
South Korea	Uruguay
Mexico	Rest of the World