The things every company needs to know: physical, economic, and operational implications of climate change

Tim Naish

TCFD workshops: Practical steps for implementation 16 October 2019–17 October 2019

ase

Global temperature continues to increase

Where to from here? News flash - Climate models may be underestimating temperature! Wait for next IPCC Report for update on climate sensitivity 2000 2050 2100 550

OCEANS, POLAR REGIONS, MOUNTAINS, COASTS AND SEA-LEVEL RISE

IPCC SPECIAL REPORT

ON THE OCEAN AND CRYOSPHERE IN A CHANGING CLIMATE

OF THE WORLD'S 7.6 BILLION PEOPLE ...

680

66%

Live on coasts

Rely on freshwater from the Hindu Kush Himalayas

= 100 million

MILLION PEOPLE LIVE IN LOW-LYING COASTAL AREAS

OF HINDU KUSH HIMALAYAN GLACIERS MAY BE LOST BY 2100

GLOBALLY, SEA LEVELS ARE RISING AND THE RATE OF RISE IS ACCELERATING.

3.6MM PER YEAR SINCE 1993

Flood losses of up to \$1 trillion per year may occur in the largest coastal cities within 30 years.

15 DEVELOPING COUNTRIES ARE HOME TO 90% OF THE WORLD'S LOW-LYING RURAL POOR.

... could be displaced in the country of Bangladesh alone by sea-level rise before 2050.

WHAT COULD OUR FUTURE LOOK LIKE?

Well, it depends. By cutting emissions, risks can be reduced or avoided, and adaptation made easier and more effective. But that means "rapid, far-reaching and unprecedented changes" in all aspects of society.

"A 66% chance of limiting global warming to 2°C"

LOW EMISSIONS

HIGH EMISSIONS

Continued and sustained growth in atmospheric GHG emissions.

Firth of Thames coastal flood, 5 January 2018

Impacts from sea-level rise

National \$19B (2011) 43,680 Replacement Total number of Infrastructure cost of all residential buildings **382** critical-facility buildings buildings 68,170 Total number of all 5 airports ★ buildings 1,547 jetties & wharves 133,265 (Census 2013) 2,121 km of roads Total resident population (1,930 km local roads) 46 km railway

Risk exposure of + 1.5m sea-level rise around New Zealand

Mean annual temperature increases by 2100

Ν

Hot days increases

Rainfall & drought occurrence increase

Annual Mean Rainfall Change Between 1995 and 2090

Aotearoa New Zealand's climate change consequences at 2°C

- 2°C warming...
 - 40% more hot days (>25 °C)
- 50cm sea-level rise (30cm by 2060)
 - 100 year flood occurs every year
- Plus 5-10% less rain in east...
 - Tripling drought occurrence agriculture horticulture
 - 4-6 months extreme fire danger, all of eastern NZ forestry

Mitigation – what is required for 1.5°C?

Pathways limiting global warming to 1.5°C with no or limited overshoot would require rapid and far-reaching transitions in energy, land, urban and infrastructure (including transport and buildings), and industrial systems (*high confidence*). These systems transitions are unprecedented in terms of scale, but not necessarily in terms of speed, and imply deep emissions reductions in all sectors, a wide portfolio of mitigation options and a significant upscaling of investments in those options (*medium confidence*). {2.3, 2.4, 2.5, 4.2, 4.3, 4.4, 4.5}

How are we doing globally?

How is New Zealand doing?

- Currently 7.5 tonnes CO₂ per capita
- Based on trend....we are not on track for 1.5°C or even 2°C!

